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Executive Summary 
Enhanced efficiency fertilizers such as nitrification inhibitors, urease inhibitors, and polymer 

coated fertilizers may provide environmental and agronomic benefits in nitrogen fertilization of 

corn production systems. Their effectiveness, however, can be influenced by agricultural 

management practices and can vary by location due to climate and soil characteristics.  In this 

study we performed a systematic review of published data from the Midwest to address the 

effectiveness of enhanced efficiency fertilizers on corn yield, nitrous oxide emissions, and nitrate 

leaching.  We identified 46 studies comprising 1248 observations which were amenable to 

meta-analyses describing corn yield response for the years 1994-2014. We modeled corn yield 

data by primary fertilizer sources (anhydrous ammonia (AA), urea ammonium nitrate (UAN), 

and urea).  In the model for anhydrous ammonia, the effect of nitrapyrin was non-significant (p 

= 0.16).  The model for UAN also showed a non-significant effect of enhanced efficiency 

fertilizers (NBPT, NBPT+DCD, Nitrapyrin, Calcium thiosulfate, or Nutrisphere; p = 0.84).  The 

factor of enhanced efficiency fertilizer in the model for urea was moderately significant (p = 

0.05) where the order of yield was urea+NBPT+DCD, polymer-coated urea, urea+NBPT, 

urea+nitrapyrin, and finally urea, though means could not be separated statistically. The 

difference in yield between urea versus urea+NBPT+DCD was 8 bushels per acre. Other factors 

such as nitrogen rate, application time, seasonal precipitation and temperature, and soil 

characteristics influenced corn yield to a greater extent than enhanced efficiency fertilizers.  Our 

understanding of the effects of enhanced efficiency fertilizers on corn yield under a variety of 

growing conditions in the Midwest would be much improved by 1) a greater number of 

published studies with more consistent reporting of means with variation, 2) finer scale in-

season meteorological data, 3) more complete geographic coverage, 4) simultaneous 

measurement of environmental effects on water-quality and N2O emissions with 

standardization of reporting in area or yield-based results. Direct modeling of NO3 and N2O was 

restricted due to a lack of sufficient coverage. Overall, this meta-analysis indicates a variable 

and condition-specific impact of enhanced efficiency fertilizers on corn yields in the Midwest.  

The database created will be publicly available to help inform future research efforts in nitrogen 

management in corn production systems. 

4RM06  12/1/2015



 

Page 2 of 66 
 

 Table of Contents 

Executive Summary ............................................................................................................... 1 

Table of Contents .................................................................................................................. 2 

1 Background and Motivation ........................................................................................... 3 

1.1 Environmental Impacts ........................................................................................... 3 

1.1.1 Subsurface Nitrate losses ............................................................................................ 3 

1.1.2 Nitrous oxide emissions .............................................................................................. 4 

1.1.3 Crop Yield .................................................................................................................... 5 

1.2 Study Objectives ..................................................................................................... 6 

2 Methods ........................................................................................................................ 6 

2.1 Database Development .......................................................................................... 6 

2.2 Meta-analysis vs. Systematic Review ...................................................................... 8 

2.3 Meta-Analysis of crop yield through direct modeling .............................................. 8 

2.3.1 Explanatory variables and random effects ................................................................. 9 

2.3.2 Model construction ................................................................................................... 10 

2.3.3 Weighting .................................................................................................................. 10 

2.3.4 Publication bias ......................................................................................................... 11 

3 Results and Discussion ................................................................................................. 11 

3.1 Crop yield ............................................................................................................. 11 

3.1.1 Anhydrous Ammonia ................................................................................................ 11 

3.1.2 UAN ........................................................................................................................... 12 

3.1.3 Urea ........................................................................................................................... 12 

3.1.4 NUE ........................................................................................................................... 13 

3.2 Discussion ............................................................................................................ 14 

3.3 Systematic Review of Environmental Impacts ....................................................... 16 

3.3.1 N2O Emissions ........................................................................................................... 16 

3.3.2 Nitrate leaching ......................................................................................................... 18 

4 Conclusion ................................................................................................................... 20 

4.1 Recommendations for future work ....................................................................... 20 

References .......................................................................................................................... 20 

Appendix: Statistical Analysis .............................................................................................. 25 

 

  



 

Page 3 of 66 
 

 1 Background and Motivation 

Nitrogen management has remained at the forefront of agronomic and environmental issues 

surrounding corn production in the Midwest due to increasing pressure to meet crop yield 

demands while minimizing environmental impacts. Over 47 of the 87 million acres of corn 

harvested in the US in 2013 (USDA NASS, 2013) were harvested in the Midwest (Illinois, Iowa, 

Indiana, Ohio, Missouri, Michigan, Minnesota, and Wisconsin). This magnitude of corn 

production and its high nitrogen requirement can lead to nitrate (NO3
-) contamination in 

groundwater and in surface waters as well as nitrous oxide (N2O) emissions to the atmosphere. 

Therefore, corn production in the Midwest is arguably the most important agricultural system 

for studying ways to more efficiently manage nitrogen fertilizers. 

Nutrient stewardship in production agriculture through the 4Rs (right source, right rate, right 

time, and right place) provides a framework for contextualizing best management practices. 

Enhanced efficiency fertilizers (EEFs) including polymer coated fertilizers (PCFs) and 

amendments such as nitrification inhibitors and urease inhibitors represent nitrogen 

management tools that may reduce environmental impact and increase crop yields.  The 

exceedingly large number of possible combinations of nitrogen source, rate, time, and 

placement, even within one cropping system, can make it difficult to compare results from 

studies located in different regions, with variable climate, soils, and accepted management 

practices. To prevent needless duplication and suggest future study directions, the soil fertility 

and fertilizer community needs to periodically systematically compile what is known in order to 

move forward in the most efficient manner possible. Systematic review and meta-analysis 

provide a framework to compile and understand the effects of enhanced efficiency fertilizers 

across the Midwestern region on environmental impacts and crop yield.  

1.1 Environmental Impacts 

Protecting nitrogen from transformation and subsequent losses is highly environmentally 

dependent. Agricultural management practices with the appropriate EEFs may be one means by 

which to reduce environmental impacts such as nitrate leaching and soil nitrous oxide 

emissions. 

1.1.1 Subsurface Nitrate losses 

Nitrate contributes to N-leaching losses due to its negative charge and greater likelihood for 

off-site movement (Jacinthe et al., 1999). Leaching of nitrogen into groundwater, subsurface 

drainage, and surface runoff can result in eutrophication and is a well-documented 
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 environmental consequence of production agriculture (Carpenter et al., 1998; McIsaac et al., 

2001; Gardner and Drinkwater, 2009).  

Nitrification inhibitors slow the conversion of ammonium to nitrate, thereby potentially 

reducing losses to leaching (Wolt, 2004). Most corn hybrids take up about 40% of N applied at 

preplant during the grain-filling stage (Ciampiti and Vyn, 2011) and so maintaining more N in 

the soil profile as ammonium during this period of crop growth may improve efficient N use, in 

addition to restriction of N losses from the soil profile.  

The most commonly used nitrification inhibitors include nitrapyrin and dicyandiamide (DCD). 

Nitrapyrin (sold as N-Serve® and Instinct®, Dow Agrosciences, LLC) has traditionally been added 

during fall anhydrous ammonia application to prevent subsurface losses (Randall et al., 2003), 

while the more recently available micro-encapsulated liquid version of nitrapyrin (Instinct) 

allows for increased use of nitrification inhibitors with liquid UAN applications. Nitrification 

inhibitors have been found to decrease nitrate leaching by 16% and increase yields by 7% in 

studies located primarily in the Midwest (Wolt, 2004). DCD is a water-soluble nitrification 

inhibitor with its effectiveness depending on temperature (declines from 10°C to 30°C) and soil 

texture (McCarty and Bremmer 1989). It can be applied alone or together with the urease 

inhibitor n-butyl thiophosphoric triamide (NBPT) and sold as AgrotainPlus® and SuperU® (Koch 

Agronomic Services, LLC). When used alone with ammonium sulfate, DCD was found to 

decrease nitrate leaching by 30% in corn grown in a Mediterranean climate (Diez et al., 2010).   

Polymer-coated urea (PCU), commonly sold as “environmentally smart nitrogen” or ESN® 

(Agrium, Inc.) is designed to help increase crop uptake and reduce nitrate leaching losses by 

allowing a more gradual release of urea to match crop demand compared to conventional urea 

(Nelson et al., 2009).  In potato crops, ESN significantly reduced nitrate leaching when 

compared to a split application of soluble N (Wilson et al., 2010), but was found to be less 

effective in reducing nitrate leaching under corn compared to urea impregnated with 

NBPT+DCD (SuperU) and to split-urea applications (Maharjan et al., 2014).  

The potential for urease inhibitors to reduce nitrate leaching is not well studied. Because the 

urease inhibitor NBPT is often formulated with the nitrification inhibitor DCD, few studies have 

investigated the effect of NBPT alone on nitrate leaching.  Urease inhibitors would not be 

expected to have a great effect on nitrate leaching, but there is little empirical data to support 

this assumption. 

1.1.2 Nitrous oxide emissions 

Nitrous oxide is about 310 times more potent than CO2 in global warming potential.  While the 

Agriculture sector is only responsible for 8.1% of total U.S. greenhouse gas emissions, 
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 agricultural activities are estimated to contribute 69% (247.2 Tg CO2 eq.) of the total 356.9 Tg 

CO2 eq. anthropogenic N2O emissions in the U.S. Of this, 26% can be attributed to synthetic 

fertilizer inputs (USEPA, 2013). Soil emissions of N2O have been shown to increase 

exponentially with increasing nitrogen application rates, especially when N rates exceed plant 

uptake capacity (Bouwman et al., 2002; Kim et al., 2012; Millar et al., 2010; Van Groenigen et al, 

2010). In addition to direct N2O emissions, attempts are being made to measure and better 

estimate the contributions that volatilized ammonia and leached nitrate found in estuaries, 

rivers, and lakes may have in off-site N2O formation. In 2011, it was estimated that indirect N2O 

emissions were 40.3 Tg CO2 eq. for cropland, with 14 Tg CO2 eq. attributed to ammonia 

volatilization and 26.4 Tg CO2 eq. attributed to nitrate leaching (USEPA, 2013).  

The potential of EEFs to directly or indirectly mitigate N2O emissions is based on how well 

microbial processes, in interaction with environmental factors and management practices, can 

be influenced to release nitrogen in conjunction with plant uptake. An understanding of which 

environmental and management factors have the most effect on N2O emissions and how these 

factors affect the mitigation potential of an EEF is necessary to make site specific and effective 

choices.  Previous meta-analyses and evaluations have looked at the effect of EEFs on N2O 

emissions (Akiyama et al., 2009; Decock, 2014; Wolt, 2004), but a meta-analysis of the effects 

of EEFs on environmental effects with a focus on the Midwest has yet to be accomplished.  

Nitrification inhibitors have been shown to consistently and significantly reduce N2O emissions 

by 38% (Akiyama et al., 2009) and 51% (Wolt, 2004), while data for PCFs were more variable 

and subject to environmental and management differences. Akiyama et al. (2009) found a 

significant reduction of 35% in N2O emissions with PCFs but this reduction varied greatly by 

region and soil type, while Decock (2014) found no N2O reduction with use of PCF compared to 

urea. Decock (2014) further analyzed the effect that environmental and management practices 

would have on N2O emissions in the Midwestern region and found significant effects for 

precipitation, aridity, soil carbon, soil order, and irrigation, but no significant effects for N 

placement, timing, tillage, or rotation. However, Decock also found that 40% of the 

heterogeneity of the data could be explained by differences among agroecological regions 

which encompassed the Atlantic Maritime states, Lake states, Midwest, Great Plains and 

Atlantic Gulf regions. These larger-scale effects may have masked effects within regions. For 

this reason, it may be more useful to narrow the scope to within-region review and analysis to 

more accurately inform best management practices and inform the agricultural community.  

1.1.3 Crop Yield 

Appropriate fertilizer N rate, timing, placement, and source can influence optimal nitrogen use 

by crops. Of these factors, attaining optimal fertilizer rate is the most important factor for 

limiting N losses (Power and Schepers, 1989), and may contribute to the variable yield 
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 responses measured with EEFs. Variable response in crop yield to the use of nitrification 

inhibitors, urease inhibitors, and polymer-coated fertilizers is often attributed to the timing, 

quantity, and frequency of rainfall after fertilizer application, as well as soil texture (Nelson et 

al., 2008). 

Ammonia (NH3) volatilization can lead to significant losses of N from urea-based fertilizers, 

leading to yield decline. Soil pH, CEC, soil moisture, temperature, and surface residue have been 

shown to be important factors influencing NH3 emissions following N application (Nelson, 1982, 

Sommer et al., 2004). Urease inhibitors discourage NH3 losses to volatilization by reducing the 

amount of NH3 released as a result of urea hydrolysis by inhibiting the urease enzyme. The 

most commonly used urease inhibitor, NBPT, has also been shown to increase yields when used 

with urea and UAN, especially in surface applications (Hendrickson, 1992). The combined effect 

of nitrification and urease inhibitors may also have an additive effect in reducing NH3 

volatilization compared to use of urease inhibitors alone (Zaman and Blennerhassett, 2010), but 

these results have not been replicated on a wide enough range of conditions to make 

generalizations of efficacy (Kim et al., 2012). Conversely, under controlled experimental 

conditions a urease inhibitor (NBPT) and a nitrification inhibitor (DCD) combined with urea 

caused an increase in NH3 volatilization by maintaining higher soil pH and soil ammonium 

(NH4
+) for greater duration, thereby offsetting the benefits of the urease inhibitor in a lab 

setting (Soares et al., 2012). Further study of the indirect formation of N2O from NH3 

volatilization is needed to better assess the mitigation potential of these inhibitors. 

1.2 Study Objectives  

For this project, our purpose was to determine whether there are environmental or agronomic 

benefits to using enhanced efficiency fertilizers for N management in Midwestern corn 

production systems using a systematic review of recent literature and meta-analysis of 

reported results when enough information was available. Comparisons were made between 

traditional nitrogen fertilizers and their respective EEFs (nitrification inhibitors, urease 

inhibitors, and/or polymer-coated fertilizers) for effect on 1) agronomic yield, 2) N2O emissions, 

and 3) nitrate leaching.    

2 Methods 

2.1 Database Development 

The ability to perform a meta-analysis is dependent on the quantity and quality of data in the 

literature.  Studies were identified using online searches for combinations of terms such as: 
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 corn, maize, Midwest, enhanced efficiency fertilizers (both brand names and chemical names), 

and state names. The full list can be found in the search terms tab of the database 

spreadsheet. Searches were performed using Web of Science and Google Scholar, and 

additional sources were collected from literature references and personal communications. 

Peer-reviewed studies, scientific reports, and theses and dissertations were considered 

acceptable if the study reported sufficient information.  For inclusion in the dataset, studies 

needed to (i) address nitrogen EEFs in Midwest corn cropping systems, (ii) be conducted under 

field conditions, (iii) be published after 1994, and (iv) have reported replication and means. 

Data needed to be reported with enough information to convert reported results to common 

forms that allowed for inter-study comparisons (i.e. percent moisture of grain yield).  

The search criteria for the systematic review and meta-analysis also included that studies take 

place in the Midwestern region of the U.S., which was considered to be comprised of Illinois, 

Iowa, Indiana, Minnesota, Missouri, Michigan, Ohio, and Wisconsin. In addition, Colorado, 

North Dakota, Kansas, and Nebraska were included in our search and dataset to provide 

additional data and to reflect a widening of the Corn Belt into the north and western regions 

where corn production has increased over the years. 

We recorded the following variables describing physical and chemical properties of the soil:  

Soil series, soil taxonomic classification, soil order, texture class, texture group, soil organic 

matter (SOM), soil organic carbon (SOC), pH, pH measurement method, bulk density, water-

filled pore space (WFPS), percent sand, and percent clay. If a soil variable was not reported in a 

particular study, we obtained the value of that variable from the National Resource 

Conservation Service (NRCS) Web Soil Survey (Soil Survey Staff, 2014). 

The climate variables mean annual precipitation (MAP, mm) and mean annual temperature 

(MAT, °C) were generated from Worldclim data that provides yearly averages of climatic 

variables from the years 1950–2000 (Hijmans et al., 2005). We recorded maximum and 

minimum annual temperatures by state for each study year from the beginning of the most 

active planting date range to the end of the most active harvesting date range (USDA NASS, 

1997). These temperatures were calculated from daily weather data collected from Daymet 

(Oak Ridge National Laboratory Distributed Active Archive Center, Thornton et al., 2014).  

Growing season precipitation (mm) was recorded as reported by the research paper when 

available.  When not reported, estimated cumulative growing season precipitation (mm) was 

entered from the sum of Daymet precipitation data from the beginning of the most active 

planting dates to the end of the most active harvesting dates (USDA NASS, 1997). Research site 

coordinates (decimal degrees) were entered as obtained from the studies when reported or 

from a search based on the name of the research site. 
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 Environmental impact variables included a seasonal cumulative N2O-N emissions which were 
area-based (kg N ha-1) and yield-scaled (g N Mg-1 grain), and flow-weighted NO3

-N leaching (mg 
L-1).  Corn yield (Mg ha-1) was standardized to 15.5% moisture.  For potential future analyses, 
indices of treatment effectiveness were calculated from yield and cumulative N2O-N data when 
available, such as: nitrogen use efficiency (NUE) and yield-scaled N2O emissions (g N2O-N Mg-1 
oven dry grain): 

𝑁𝑈𝐸 =
𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑑 − 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑛𝑜𝑛𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑁 𝑟𝑎𝑡𝑒
 

𝑌𝑖𝑒𝑙𝑑 𝑠𝑐𝑎𝑙𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  
𝑁2𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑦𝑖𝑒𝑙𝑑 
 

where N2O emissions are expressed as g N2O-N g ha-1 and oven dry yield is expressed as Mg ha-

1. 

When information was extracted from graphical data using GraphClick (Arizona Software, 2012) 

or study authors were contacted for missing information, the source of this information was 

indicated in the database “source” column. 

2.2 Meta-analysis vs. Systematic Review 

After compiling the study data, we considered three response variables for a model-based 

meta-analysis: yield, N2O emissions, and nitrate leaching.  There were sufficient studies and 

observations to warrant a meta-analysis of yield.  However, N2O and nitrate were less well 

represented in the literature. For this reason, we performed a quantitative meta-analysis on 

corn yield and a systematic review of N2O emissions and nitrate leaching. Available studies are 

included in the database so that as future studies are published, meta-analysis of EEF effects on 

N2O emissions and nitrate leaching may be performed.  For yield, our goal was to answer the 

question: Do any EEFs produce significantly greater corn yield when other factors, such as 

placement, application time, N rate, climate/weather, and soil characteristics are taken into 

account? 

2.3 Meta-Analysis of crop yield through direct modeling 

We performed a meta-analysis via direct modeling of treatment means for yield. We used 

multiple linear regression mixed models, specifically, analysis of covariance (ANCOVA) models, 

of yield as a function of explanatory variables and random effects, under the assumption of 

normality. We developed one model for each of three major nitrogen sources:  Anhydrous 
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 ammonia (AA), urea ammonium nitrate (UAN), and urea since each fertilizer source is 

characterized by different common management methods.   

In each of the models, the categorical variable, or factor, fertilizer has multiple values (levels), 

one of which is the non-enhanced source. The values for each model of the same N source 

were: AA+nitrapyrin or AA; UAN+Agrotain, UAN+AgrotainPlus, UAN+calcium thiosulfate, 

UAN+Nutrisphere, UAN+Nfusion, or UAN; and urea+Agrotain, SuperU, ESN, urea+Nutrisphere, 

urea+nitrapyrin, or urea. Calcium thiosulfate (cats), Nutrisphere, and Nfusion were labeled as 

“slow-release” (S.R.) in the database.  If the variable fertilizer was statistically significant, then 

Tukey-Kramer pairwise comparisons was used to separate the least-squares mean yield 

estimates (LSmeans). The data available determined what models could be developed. 

2.3.1 Explanatory variables and random effects 

In addition to using fertilizer as an explanatory variable, we selected a subset of the variables 

detailed in Section 2.1 for use in the statistical models that we hypothesized would have the 

greatest likelihood of an effect on yield. These effects included application timing (apptime) 

which was divided into fall, pre-planting (N-applied in the winter or spring > 5 days prior to 

planting), at planting (N-applied 5 days before to 20 days after planting), sidedress (N-applied > 

20 days after planting), pre-planting/sidedress, and at planting/sidedress. Placement (place) 

was sorted into broadcast, broadcast incorporated, surface banded, and subsurface banded. 

Crop rotation (rotate) had various combinations, but for modeling purposes was divided into 

rotated or continuous corn cultivation. Tillage (till) was primarily either tilled or no-till, though 

some instances of strip-till were included.  Total N rate (ratetot) was included and transformed 

to a centered-normalized form and in the form of categorical binned values (See Appendix A 

2.3).   

For the meteorological variables, we included the maximum and minimum daily temperatures 

in the growing season and totalwater (the sum of precipitation and irrigation applied). We used 

the cumulative growing season precipitation reported by the authors when available or, if none 

was reported, cumulative growing season precipitation estimated using Daymet. We included 

maximum and minimum temperatures to provide information about the effect an extreme 

weather effects, but unfortunately, these do not provide information concerning distribution of 

temperature throughout the growing season or the cumulative growing degree days, which 

would have been ideal.  

We included the soil variables percent sand and clay, pH, and SOM. Other variables that 

described soil—soil series, soil class, soil order, and soil texture—were often were overlapping 

with values of county. Thus the county random effect was used to account for between-site 

differences in yield due to soil variables as well as meteorological differences. 
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 Functional forms were considered for continuous variables. The relationship of yield to the 

continuous variables was examined as linear, quadratic, and exponential.  Interactions among 

the continuous variables were also considered (see Appendix A 2.4).  

Random effects consisted of year nested within county to take into account variability across 

locations and over years. Rotation and tillage were considered random effects in models where 

there were not enough observations to test them as fixed effects due to a lack of sufficient 

combinations. To implement the linear models with random effects, we used Proc Glimmix® in 

SAS 9.3 (SAS Institute Inc., Cary, NC, USA). 

2.3.2 Model construction 

Variable selection was conducted according to a process of iterative model construction, 

examining for issues of collinearity and estimability (see Section A 2.5).  Residuals analysis was 

performed to check model assumptions (see Section A 2.6).  For each final model, we used Q-Q 

plots, histograms, and boxplots of residuals to assess the assumption of normality, scatterplots 

of residuals vs. predicted yield to assess heterogeneity and overall goodness-of-fit, and 

scatterplots of residuals vs. each continuous variable to assess functional form decisions and 

influence of individual observations on model fit.   

We used the alpha = 0.01 level for the backward elimination steps. Constructing a model for 

observational data entailed performing more hypothesis tests than one would perform when 

analyzing the results of a designed experiment and therefore requires a more conservative 

alpha level. Reducing the statistical significance level to 0.01 was implemented to reduce the 

number of tests that would incorrectly support rejecting the null hypothesis of zero effect. 

2.3.3 Weighting 

Weighting can be an important component of a meta-analysis if individual studies differ greatly 

in their levels of accuracy (Philibert et al., 2012). Each study selected for analysis will have a 

different level of variability in yield for a given treatment and may also have had different 

sample sizes.  Weights can be assigned to observations in the model to adjust for these 

attributes. For the UAN and urea models, we performed an analysis to examine to what extent 

conclusions about the effect of fertilizer on yield were sensitive to the use of weights. We 

considered the weights 1/SE2 (the reciprocal of the squared standard error of the mean) and r, 

the number of replicates that supported each treatment mean. See Section A4.3 for a 

discussion of weighting schemes and sensitivity analysis. When we used a significance level of 

alpha = 0.01, we did not find that using weights changed our conclusions about the significance 

of the effect of fertilizer.  



 

Page 11 of 66 
 

 2.3.4 Publication bias  

There is a well-known publication bias towards significant results which could distort the results 

of meta-analysis towards finding greater significance than actually occurs (Philibert et al., 2012). 

We used funnel plots to examine the likelihood of bias across all EEFs and did not find evidence 

of significant publication bias (data not shown). However, through personal communications, 

we are aware of many field trials involving EEFs in the Midwest that are currently unpublished. 

This is often due to a reluctance of journals to publish non-significant results, often biasing the 

literature towards significance. 

3 Results and Discussion 

3.1 Crop yield 

3.1.1 Anhydrous Ammonia 

The data available for anhydrous ammonia included 148 observations from 24 studies by six 

different author groups in four states and six counties. The data supported a complete factorial 

ANCOVA model in which the factors (and their levels) were fertilizer (AA, AA+N-serve), till (no-

till, tilled), and apptime (at planting, pre-plant, fall;  

Table A 3.6). Each combination of fertilizer, till, and apptime had at least two observations. All 

observations were under a corn/soybean rotation with subsurface banded placement. There 

were sufficient data to test the effect of fertilizer, apptime, and till, but there were not enough 

continuous corn experiments to test rotate. There were enough values of continuous variables 

such as total N rate (ratetot) at each categorical variable level to test for interactions between 

continuous and categorical variables. Full details regarding dataset selection and model building 

can be found in Section A3. 

The fixed effects in the final model included: apptime, ratetot, pH, and the interaction of ratetot 

with pH (Table A 3.10). The effect of fertilizer was not significant (p = 0.16), meaning that the 

1.5% difference (0.16 Mg ha-1 or 2.6 bu ac-1) between AA+nitrapyrin and AA was not significant 

after controlling for other factors in the model. There were no values of apptime, till, or any of 

the continuous variables that had a significant interaction with fertilizer. While a broader 

literature search would be required to directly address the effect of application timing, for the 

studies included in this analysis, in comparison, there was a significant 1.1 Mg ha-1 (17 bu ac-1) 

increase in yield when nitrogen was applied at planting, which was significantly greater than 

preplant or fall application, which were statistically similar (Table A 3.11). 
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 3.1.2 UAN 

The final model for UAN-based fertilizers contained 262 observations from 17 studies by six 

author groups in five states and 12 counties. This dataset for UAN supported an ANCOVA model 

in which the factors (and their levels) were fertilizer (UAN, UAN+Agrotain, UAN+AgrotainPlus, 

UAN+Calcium thiosulfate, UAN+Nutrisphere, UAN+Nfusion), apptime (at planting, at 

planting/sidedress, preplant, and sidedress), and place (broadcast incorporated, broadcast, 

subsurface band, and surface band). Of the 384 combinations of values of the three factors, 

there were 50 that were represented by at least three observations in the dataset. Since not 

every level of each factor was observed in combination with each level of each other factor, we 

examined main effects of categorical variables but were not able to examine interactions 

among them. Due to this lack of coverage, we chose to use rotate and till as random effects. 

Additionally, there were insufficient values of the continuous variables at each level of each 

categorical variable to support inferences regarding interactions between categorical and 

continuous variables. Total N rate was modeled with an exponential functional form (erate) in 

this model. Full details regarding dataset selection and model building can be found in Section 

A4. 

The fixed effects in the final model included apptime, erate, tempmax, tempmin, pH, SOM, and 

the interactions between tempmax and erate, tempmin and erate, pH and erate, and SOM and 

erate (Table A 4.9). Fertilizer was added back to the model to demonstrate its effect, but was 

not significant (p = 0.837).  None of the enhanced versions of UAN produced a significantly 

higher yield than UAN alone even after controlling for other factors that affected yield, and 

none of the EEFs were significantly different from any other EEF. It was not possible to examine 

the interaction of fertilizer with the categorical or continuous variables. This lack of sufficient 

information to form interactions is a significant gap in the literature. In comparison, application 

time for the studies included in this analysis, showed that splitting nitrogen application 

between at planting and sidedress increased yields between 0.9 to 16 Mg ha-1 (14 to 32 bu ac-1) 

over other application times (Table A 4.10).    

3.1.3 Urea 

Crop yield with urea-based fertilizer sources had the greatest number of observations.  The final 

model was based on 479 observations from 38 studies by 16 different author groups from eight 

states and 19 counties. The dataset for urea supported an ANCOVA model in which the factors 

were fertilizer (urea, urea+Agrotain, SuperU, ESN, urea+Nutrisphere, urea+nitrapyrin), apptime 

(at planting, at planting/sidedress, preplant, preplant/sidedress, sidedress, and fall), and place 

(broadcast incorporated, broadcast, subsurface band, surface band). Of the 720 combinations 

of values of the three factors, there were 74 that were represented by at least three 

observations each. Since not every level of each factor was observed in combination with each 
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 level of each other factor, we examined main effects of categorical variables but not 

interactions among them.  The lack of interactions in the model means that it was not possible 

to examine the effect of to apptime, place, rotate or till on fertilizer, but they could still be 

included in the model as fixed effects. There were also insufficient values to support inferences 

regarding interactions between continuous and categorical variables. Full details regarding 

dataset selection and model building can be found in Section A4.4. 

The fixed effects that remained in the final model included apptime, tempmax, tempmin, pH, 

SOM, totalwater, and erate. The fixed effect of fertilizer was added back to the model to 

examine its level of significance (p = 0.0525), which was not statistically significant at the 0.01 

level, and therefore means for fertilizer types could not be separated statistically. The 

numerical differences in LSmeans of EEFs compared to urea were at most 5%. There was a non-

significant difference of 0.5 Mg ha-1 (8 bu ac-1) for SuperU, and a 0.4 Mg ha-1 (6.4 bu ac-1) for 

PCU and urea+Agrotain (Table A 4.24).  None of the enhanced versions of urea produce a 

significantly higher yield than urea alone, after controlling for other factors that affected yield, 

and none of the EEFs was significantly different from each other. It was not possible to test the 

effect of fertilizer on yield as an interaction with any of the categorical or continuous variables. 

Application timing, in comparison, like in AA and UAN, had a much greater effect on yields than 

fertilizer. Sidedress yielded 2.9 Mg ha-1 (46 bu ac-1) higher than preplant and 2.5 Mg ha-1 (40 bu 

ac-1) higher than fall in these studies. At planting yielded 1.0 Mg ha-1 (16 bu ac-1) higher than 

preplant (Table A 4.25).  

3.1.4 NUE 

Nitrogen use efficiency was calculated for studies that included a control (no nitrogen fertilizer 

added) and is included in the database.  There was a negative relationship between N rate and 

NUE, showing that as increasing amounts of fertilizer are applied NUE decreased (Figure 

1).  Improved NUE in corn with the use of EEFs could result in N-rate reductions without 

compromising yield (Shoji, 2001). When N rates were reduced in one study in Colorado, ESN 

was found to improve nitrogen-use efficiency compared to urea by 4–14% at N rates from 168–

280 kg N ha-1, while no benefit to NUE was found with SuperU compared to urea (Halvorson et 

al., 2014). 

Additional modeling will be required to assess possible differences in effect of enhanced 

efficiency fertilizers on NUE, but preliminary analysis suggests there may be differences among 

fertilizer sources (data not shown). Synchronizing crop uptake with fertilizer nitrogen 

availability by using EEFs may improve nitrogen use efficiency and reduce N losses, but more 

information will be required to assess this hypothesis.  



 

Page 14 of 66 
 

  

3.2 Discussion 

This direct modeling meta-analysis showed that, based on the reported literature, there are no 

statistically significant differences between conventional fertilizer sources and their enhanced 

efficiency counterparts when management, soil, and meteorological factors were taken into 

account. Other meta-analyses have also found no effect of nitrification inhibitors on yield, or a 

negative effect of controlled release fertilizers on yield (Quemada et al., 2013). In rice systems 

however, both nitrification inhibitors and urease inhibitors were found to have a positive effect 

on yield, though the effect was a modest 5.6%, while DCD was found to not be effective when 

the added nitrogen was taken into account (Linquist et al., 2013).  Wolt (2004) also found a 

slight increase in yield (7%) with the use of nitrapyrin in a pairwise comparison, though no 

meta-analytical procedure were used.  

  

Figure 1  Nitrogen use efficiency has a significant negative relationship with N-rate applied NUE = 44.3 - 0.09*Nrate.   
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 The conditions under which a yield benefit with the use of EEFs may be realized are highly 

variable and depend on the mechanisms for N loss.  Interactions of enhanced efficiency 

fertilizers with timing, application, and N rate are variable and may be heavily influenced by the 

environment, thereby changing year-to-year.  For example, we typically would expect to see a 

reduction in N loss from a urease inhibitor if urea were broadcast applied in no-till, high residue 

conditions to moist soil and followed by a dry period (Schlegal et al., 1986; Sommer et al., 

2004). For nitrification inhibitors, we might expect to see a reduction in N loss by delaying 

nitrification when warm soil temperatures were combined with saturated fine-textured soils 

(denitrification) or high rainfall in coarse-textured soils (leaching) (Ferguson et al., 2003).   

It is possible that available data cannot appropriately describe the conditions in which N losses 

lead to yield decline without the use of enhanced efficiency fertilizers.  With more specific 

meteorological information, it may be possible to better understand under which conditions 

across the Midwest, we would be most likely to see a response to enhanced efficiency 

fertilizers.  Additionally, the lack of full factorial datasets for categorical variables and 

insufficient coverage of continuous variables for each categorical variable for urea and UAN 

models may have limited our ability to discover interactions.  This gap in the literature could be 

filled by new research informed by the current database compiled for this study.    

It is commonly assumed that nitrogen rate is an overriding factor in the likelihood of seeing a 

response to EEFs. Above optimum N rates would compensate for any savings in nitrogen due to 

EEFs preventing N losses. We found no significant interactions of fertilizer and N rates, nor did 

Linquist et al. (2013) in rice systems.   

Our modeling results did suggest that application timing was of much greater importance in 

these studies than EEFs. Though this database was not constructed to analyze application 

timing across the Midwest, the relative magnitude of significance of application timing would 

suggest that a meta-analysis of application timing may be a worthwhile endeavor. 

We can conclude from the meta-analysis that EEFs have a rather small and mostly non-

significant effect on corn yield in the Midwest when other management and environmental 

variables are taken into account. While there are certain situations in which enhanced 

efficiency fertilizers can have a positive effect, when compiled across the published literature in 

the Midwest, we can consider EEFs more of an insurance policy than a means to consistently 

and significantly increase yield.  There may be more potential benefits on the environmental 

impacts, which will require even greater amounts of study.  



 

Page 16 of 66 
 

 3.3 Systematic Review of Environmental Impacts 

3.3.1 N2O Emissions 

There were 11 studies and 146 total observations for N2O that fit the search criteria for this 

dataset. There were seven studies with area-scaled emissions, six of which included SE.  There 

were nine studies where yield-scaled emissions were either given or able to be calculated, but 

only one included a report of variance. A further complication with modeling N2O emissions 

included the fact that measurements were collected over different intervals ranging from 89–

184 days, so that cumulative emissions were not directly comparable.  There were greater 

fertilizer induced emission from AA over other sources (Figure 2), but more data coverage as 

studies are published and in depth modeling and analysis will be required to better examine 

this effect. 

 

Decock et al. (2014) found that variation in Fertilizer-Induced Emissions (FIE) was most affected 

by N-source (44%) and the use of nitrification inhibitors (16%) and less by N timing, placement, 

tillage and rotation.  In comparing between fertilizer source and tillage systems, Venterea et al. 

(2005) found that N2O emissions with AA were significantly higher than UAN or broadcast urea 

regardless of tillage, and two out of three summary reports found the range of N2O emissions 

to be higher in AA than urea and UAN (Snyder, 2009).  

Nitrification inhibitors have been shown to reduce N2O emissions by 30–80% across a broad 

spectrum of agricultural soils (Wolt, 2004; Akiyama et al., 2009; Decock, 2014). However, 

 

Figure 2 Fertilizer induced N2O emissions (calculated at the percent of N applied that is lost as N2O-N) shows that AA has 
significantly greater emissions than any other N fertilizer treatment. Error bars represent standard error of the mean; number 
of observations in parentheses.  
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 nitrapyrin added to AA in Iowa was not found to significantly reduce N2O emissions during the 

growing season, although a significant reduction was seen between fall application and 

planting (Parkin and Hatfield, 2010). In Indiana, when nitrapyrin (Instinct) was added to UAN, 

N2O was reduced 19–27% over three years and significantly reduced (67%) in one year 

(Omonode, 2013).  

The nitrification inhibitor DCD is applied with the urease inhibitor NBPT when added to urea 

(SuperU) and UAN (AgrotainPlus). In trials in Colorado, compared to urea, UAN+AgrotainPlus 

and SuperU both significantly reduced N2O emissions between 46-62% (Halvorson et al. 2010, 

2011, 2012).  Compared to UAN, SuperU and UAN+AgrotainPlus significantly reduced N2O by 29 

and 35%, respectively, in no-till and strip tilled systems (Halvorson et al., 2010).   

Polymer coated fertilizers (PCFs) slow down nitrogen release but have only shown to be 
effective in reducing N2O emissions in some cases (Akiyama et al., 2010; Halvorson and Del 
Grosso, 2012). Compared to urea, ESN significantly reduced N2O emissions by 34–57%, which 
was higher than the reductions seen by UAN without inhibitors, although ESN and UAN were 
not significantly different from each other (Halvorson et al., 2010, 2012). In comparison to UAN 
and UAN+AgrotainPlus, ESN had significantly higher N2O emissions in Iowa (Parkin and Hatfield 
2013). Venterea (2011) found no difference between ESN, SuperU, and urea regardless of 
tillage.  

In regards to fertilizer placement, several studies have found that fertilizer banding (Argoti, 

2013; Bouwman, et. al. 2002; Gagnon, 2011; Halvorson et al., 2011; Halvorson and Delgrosso, 

2013) and split applications (Burzaco et al., 2013; Ma et al., 2010) increased N2O emissions, 

although more data are needed to explore the differences among N placements in various 

climates with different EEFs.  

Increasing temperature, precipitation, and water-filled pore space (WFPS) have been shown to 

increase N2O production. Higher soil temperature may increase N2O through increased 

respiration with reduction in the amount of available soil oxygen and creation of anaerobic 

microsites. With increasing % WFPS the ratio of NO-N/N2O-N changes, from about 3–5 in the 

50–60% range to <1 at or above 80% due to consumption of NO by denitrifiers (Smith, 2003). 

Pulses of N2O emissions have been observed following fertilization, soil disturbance such as 

tillage, rainfall events and freeze/thaw cycles.  In Illinois, Fernandez et al. (2014) found that the 

largest N2O peaks were seen after heavy rainfall (>20mm) regardless of N source.  Flessa (1995) 

and Kaiser (1998) stated that half of all annual N2O from arable land can be generated by 

freeze/thaw cycles. Halvorson (2012) found that N2O emissions were detected in plots during 

the March thaw with an estimated 18, 12, 17, and 42% of the yearly N2O emissions for ESN, 

SuperU, UAN+AgrotainPlus, and a no fertilizer treatment, respectively. Soil structure, carbon 

content, and drainage have also been found to have significant effects on N2O formation 
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 (Decock, 2013; Motavalli, 2008; Maharjan, 2014; Stehfast and Bouwman, 2006). In a data 

summary, N2O fluxes had been found to be higher for fine textured (2.9 kg N2O-N ha-1) than 

medium textured soils (1.9 kg N2O-N ha-1) and as soil organic matter increased above 6%, N2O 

emissions increased from 1.9 kg N2O-N ha-1 to 4.2 kg N2O-N ha-1 (Bouwman et al., 2002).  

To better understand the complex process of N2O formation and mitigation more studies are 

needed to better address the complex interactions witnessed between environmental and 

management factors. Due to the high variability of the results so far obtained as to the efficacy 

of EEFs, more studies comparing these products in the Midwestern region are needed, 

particularly in locations that have been identified as having a high potential for N2O emissions 

(i.e., high intensity and frequent rainfall events shortly after fertilization, fine-textured clayey 

soils prone to poor drainage, soils with high organic matter, high N inputs, and land in transition 

to no-till). Furthermore, accounting of indirect N2O emissions is needed, especially due to 

potential nitrate leaching.  

3.3.2 Nitrate leaching 

Out of six studies and 135 total location-year observations for nitrate leaching there were only 

two studies that included any measure of variability. One study reported three mean treatment 

observations (Randall et al., 2011) and another reported four (Maharjan et al., 2014), both in 

area-scaled results. Maharjan et al. (2014) gave 16 yield-scaled observations, but these 

unfortunately could not be compared across studies. Due to the low number of studies, we 

were not able to perform a meta-analysis on the effect of EEFs on nitrate leaching, but could 

complete a systematic review. 

In this Midwest dataset, five of the six studies that examined nitrate leaching used nitrapyrin as 

a nitrification inhibitor. Some results reported flow-normalized data (kg ha-1 cm-1), which are 

NO3
--N losses normalized for annual flow volume and expressed on a per-centimeter 

basis.  Over a six-cycle corn-soybean rotation average, the addition of nitrapyrin to fall-applied 

AA has been found to decrease average flow-normalized NO3
--N losses by 18% and 10% 

compared to fall-applied AA alone (Randall et al., 2003; Randall and Vetsch, 2005).  Spring-

applied AA with nitrapyrin did not reduce flow-normalized NO3
--N losses when compared to 

spring-applied AA alone.  However, when comparing against fall-applied AA without nitrapyrin, 

spring-applied AA without nitrapyrin reduced flow-normalized NO3
--N losses by 14% while 

spring-applied AA with nitrapyrin reduced flow-normalized NO3
--N losses by 6% (Randall and 

Vetsch, 2005).  In contrast, annual reports by Randall and Vetsch (2002 & 2003) indicate flow-

weighted NO3
--N concentrations (mg N L-1) in drainage water under corn from fall-applied AA 

were not affected by nitrapyrin. An annual report from Vetsch and Randall (2011) indicated that 

adding nitrapyrin to spring-applied UAN did not affect average flow-weighted NO3
--N 

concentrations when compared to UAN alone. Lawlor et al. (2004) found that the addition of 
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 nitrapyrin to aqua-ammonia applications did not reduce average flow-weighted NO3
- 

concentrations in fall or spring in a corn-soybean rotation at a 168 kg ha-1 rate, and there were 

no significant differences three of four years among the treatments. The results for each 

application from highest NO3
--N concentrations in subsurface drainage to the lowest rank as 

follows: spring with inhibitor > fall with inhibitor > spring alone > fall alone, though results were 

not statistically significantly different.  A study by Maharjan et al. (2014) used SuperU and ESN 

as treatments, resulting with the amount of NO3
- leached (kg NO3

--N ha-1) under corn among 

treatments as follows: ESN > SuperU > split-urea > control (no urea).  The study also reported  

NO3
-  leaching in yield-scaled units (kg N Mg-1 grain) which changed the arrangement of nitrate 

leached among treatments to the following order: Control > ESN > SuperU > split-U.  Reporting 

N losses as yield-scaled units provides a useful way of comparing crop production versus nitrate 

losses.  

Subsurface losses of nitrate from continuous corn have tended to be higher than other types of 

crop rotations (Weed and Kanwar, 1996). Management practices, such as diversified crop 

rotations, can reduce the loss of nitrate, but there is little information regarding the 

interactions of enhanced efficiency fertilizers with crop rotation. Reduced losses have occurred 

in corn-soybean rotations when compared to continuous corn, though the reduction is often 

dependent on climatic conditions (Randall et al., 1997). Rotations including nitrogen fixers, such 

as soybeans, do not require N inputs in the legume phase of the rotation. Soybean has been 

thought to contribute less to subsurface leaching of NO3
--N than corn, but residual soil nitrate 

from the corn phase and N that has mineralized in the soil can leach into subsurface drainage 

during the soybean phase. Close agreement was found for the relative amounts of NO3
--N 

losses in corn-soybean rotations by Randall et al. (2003) with 45% leached in soybean and 55% 

in corn, and by Randall and Vetsch (2005) with 46% leached in soybean and 54% in corn. 

Insights may be gained studying the interaction of rotation with NO3
--N losses, particularly 

when using slow-release fertilizers, with nitrate losses in corn/soybean systems compared to 

continuous corn. 

Timing of N application is known to affect nitrate leaching.  Depending on climatic factors and 

water availability, nitrogen applied in the fall may have more opportunities for loss before crops 

can utilize the nutrient than nitrogen applied in the spring.  With fall application, Randall and 

Mulla (2001) reported 36% more NO3
--N losses in tile drainage than when compared to spring 

application.  Significantly higher NO3
--N concentrations from fall manure applications were 

found when compared to spring manure applications by Van Es et al. (2006), suggesting 

increased denitrification and leaching potential from fall application. However, outside of 

Minnesota there are very few studies that compare fall and spring applications of AA and their 

effects on nitrate leaching with the use of inhibitors. To inform potential future regulations or 

guidelines, this information would be highly desirable. 
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 4 Conclusion 

Overall, there were non-significant differences among AA, UAN, and urea and their enhanced 

efficiency fertilizer counterparts when taking into account management and environmental 

factors. Application timing and N rate had much greater effects on yield than EEFs.  The data 

available for this direct modeling may not encompass the important information to discerning 

conditions where EEFs may be most effective (i.e. rainfall and soil conditions within a few 

weeks after application). A greater coverage of studies across more locations would provide a 

more robust dataset for meta-analysis of the effect of local and temporal conditions on relative 

yield.  In regards to environmental impacts, preliminary analysis shows that fertilizer induced 

N2O emissions may be greatly affected by fertilizer source, with anhydrous ammonia resulting 

in greater emissions.  Additional modeling will be required to evaluate this highly variable 

phenomenon, published using a variety of methods of reporting conventions.  Nitrate leaching, 

unfortunately, shows the greatest lack of published literature despite the heavy environmental 

consequences. Nitrate leaching and water-quality information reported with measures of 

variability are the biggest information gap at this time for both tile-drained and non-tile-drained 

systems.   

4.1 Recommendations for future work 

1. Standard deviations or standard errors should be estimated and reported so that results 
can beincluded in the meta-analysis. 

2. Additional studies of corn yield in response to EEFs with urea, UAN, or AA sources as 
they interact with the 4Rs should be done to provide additional data points to add to 
the analytical procedure developed here. 

3. More data should be gathered to better represent meteorological conditions (growing 
degree days, rainfall, humidity, soil temperature/moisture) and used in place of the 
surrogates used in the present analysis. 
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Appendix: Statistical Analysis 

A1 Introduction 

The specific objective of this quantitative meta-analysis is to determine whether using an 

enhanced efficiency fertilizer (EEF) will produce greater corn yield than will using the non-

enhanced version of the same N source, to compare the yields produced by different EEFs, and 

to determine whether and to what extent the ability of EEFs to increase yield is affected by 

placement, application time, application rate, or other management, meteorological, or soil 

variables. To this end, we developed three models of the response variable yield—one for each 

of the primary N sources anhydrous ammonia (AA), urea ammonium nitrate (UAN), and urea—
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 as a function of the explanatory variables fertilizer, application timing, rate, placement, 

cropping system, tillage, climate and meteorological variables, and soil characteristics. 

A1.1 Notation and language use 

The factors were italicized to specifically refer to the mathematical variable. In some cases, 

particularly for the variables fertilizer and yield, the use of the word as a mathematical variable 

is almost the same as is its normal usage, and in this case either italics or non-italics may be 

used. Italics are also used for emphasis, as they are in non-mathematical documents.  

Variable names refer to column headings in the spreadsheet unless the variable was created 

from those columns, in which case it was be defined in the text. 

A factor is a categorical variable being considered as an independent variable in a model. 

The following words are synonyms: independent variable, explanatory variable, predictor 

variable, and covariate.  

A2 Methods 

A2.1 Selecting data for models 

The availability of data determined which models could be developed and what questions could 

be answered with them. We started with the 1281-observation dataset found in the “yield” tab 

of the database (Midwest_Corn_EEF_Meta-analysis Database.xlsx). An observation—or row—in 

this dataset represents a yield treatment mean from a study with associated explanatory 

variables.  We excluded 11 observations from 3 studies that were missing the yield treatment 

mean due to technical problems the authors encountered, but we kept the other observations 

from these studies. We omitted 22 additional observations from three studies in which 

treatment means were reported as averages over factors of interest (Nelson 13, Nelson 11, and 

Burzaco 14 in the dataset). These studies were averaged over application timing, over three 

cropping systems, and with results representing complicated averages over sites and years 

(Nelson et al., 2011; Nelson et al., 2014; Burzaco et al., 2014). 

Those edits produced the 1248-observation dataset with source-inhibitor-fertilizer 

combinations shown in Table A 2.1, which gives the number of observations in each 

combination and the number of observations for which the standard error (SE) associated with 

the treatment mean was available. SE could have been reported in the paper, provided by the 

author in personal communications, or derived from the standard deviation (SD) that was 
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reported or provided by the author (𝑆𝐸 = 𝑆𝐷/√𝑟 ), where 𝑟 is the number of replicates 

supporting the treatment mean). The total number of observations with SE is 917. 

There was considerable range of number of observations for the different fertilizer source and 

enhancement types (Table A 2.1). Based on the observation totals, and the fact that some 

management practices are inherently different for different N sources (e.g., AA is only applied 

subsurface), we estimated a separate model to assess the effects of enhancements for AA, 

UAN, and urea.  The other fertilizer sources were represented by too few observations to 

attempt to model these effects. 

Table A 2.1 Source-inhibitor-fertilizer combinations with number of observations (treatment means) and number of 
observations that include SE. 

Combination Source Inhibitor Fertilizer n n_with_se 

1 AA nitrapyrin AA+nitrapyrin 72 23 

2 AA none AA 92 30 

3 Aq. A nitrapyrin Aq. A+Nitrapyrin 8 0 

4 Aq. A none Aq. A 16 0 

5 Nitamin S.R. Nitamin 6 6 

6 Nurea S.R. Nurea 1 1 

7 UAN NBPT UAN+Agrotain 56 56 

8 UAN NBPT+DCD UAN+AgrotainPlus 58 46 

9 UAN S.R. UAN+Nfusion 2 2 

10 UAN S.R. UAN+Nutrisphere 9 0 

11 UAN nitrapyrin UAN+Instinct 13 13 

12 UAN none UAN 117 105 

13 UAN thiosulfate UAN cats 40 40 

14 ammonium sulfate DCD ammonium sulfate+DCD 2 0 

15 ammonium sulfate none ammonium sulfate 4 0 

16 control control control 194 145 

17 urea NBPT urea+Agrotain 51 40 

18 urea NBPT+DCD SuperU 78 74 

19 urea PCF Duration III 2 2 

20 urea PCF ESN 160 118 

21 urea PCF PCU 8 8 

22 urea PCF urea/ESN 4 0 
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Combination Source Inhibitor Fertilizer n n_with_se 

23 urea S.R. urea+Nutrisphere 17 14 

24 urea nitrapyrin urea+Instinct 28 28 

25 urea nitrapyrin urea+N-Serve 4 0 

26 urea nitrapyrin urea+nitrapyrin 1 1 

27 urea none urea 205 165 

    1248 917 

A2.2 Meta-analysis via direct modeling 

We performed a meta-analysis via direct modeling of treatment means for yield. We used 

multiple linear regression models of yield as a function of explanatory variables and random 

effects, under the assumption of normality. 

In each of the models, the categorical variable, or factor, fertilizer has multiple values (levels), 

one of which is the non-enhanced N source: AA, UAN, or Urea. The other values are enhanced 

versions of the same N source: AA+nitrapyrin for AA; UAN+Agrotain, UAN+AgrotainPlus, 

UAN+calcium thiosulphate, UAN+Nutrisphere, UAN+Nfusion for UAN; and urea+Agrotain, 

SuperU, ESN, urea+Nutrisphere, urea+nitrapyrin for urea. If the variable fertilizer was 

statistically significant, then the mean yield for at least one of the fertilizer/enhancement 

combinations for that N source was significantly different from the means of all the others. To 

interpret a statistically significant effect of fertilizer, we looked at the pairwise comparisons of 

model-based least-squares mean estimates (LS means) for each fertilizer to determine which 

means were significantly different.  

To determine the effect of fertilizer using a meta-analysis, it was necessary to control for factors 

that might have contributed to variability in yield but may have differed between studies 

covering a wide variety of sites and years. Within an individual study, researchers control for or 

include variables such as rate, application time, placement, cropping system, and tillage; 

meteorology, soil characteristics, drainage systems, and topology are controlled by using a 

single site, by replicating treatments over multiple sites, or by blocking over individual plots on 

the same site that have different characteristics. 

Meta-analysis data, however, is observational rather than produced via experimental design. 

For this analysis, factors other than fertilizer that might have affected yield were controlled by 

including each in the model as either a fixed effect or a random effect. We use a fixed effect 

when we were interested in drawing conclusions about the factor itself and its interaction with 

fertilizer, and if the data are sufficient to support such inferences. We use a random effect if we 
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 were not interested in quantifying the effect of the factor itself, but must account for its effect 

to avoid drawing erroneous conclusions about the effect of fertilizer, or if the data were 

insufficient for quantification as a fixed effect. It was necessary to include all factors that might 

affect yield simultaneously in a single model, so that the degree to which each factor and/or 

each interaction among factors describing variability in yield could be appropriately discerned 

and allocated. Constructing multiple models of yield using only one explanatory factor at a 

time, which has been done in other meta-analyses (Basche, et al. 2014, Decock 2014), can lead 

to inflated estimates of effect of these factors on yield and their level of significance because 

each factor is the only one being allowed to explain variability in the model, without competing 

with other factors. 

A2.3 Explanatory variables and random effects 

To control for the simultaneous effect of the several factors examined in this study, we selected 

a subset of the variables detailed in Section 2.1 for use in the statistical models. Of the 4R’s, the 

N source is accounted for by using a different model for AA, UAN, and Urea. Application timing, 

or apptime, was divided into fall, pre-planting (N-applied in the winter or spring > 5 days prior 

to planting), at planting (N-applied 5 days before to 20 days after planting), side dress (N-

applied > 20 days after planting), pre-planting/sidedress, and at planting/sidedress. Placement 

or place was sorted into broadcast, broadcast incorporated, surface banded, and subsurface 

banded. Other management variables included crop rotation, which was represented by the 

variable rotate, which takes the value “no” for continuous corn, and “yes” otherwise. The 

variable till takes values “tilled” or “no-till.” 

Total N rate (ratetot) was a continuous variable. Since the positive effect of N rate on yield is 

known to diminish with greater yield, we also considered use of a transformation of ratetot that 

would produce such a curve: erate = exp(-(ratetot – mean)/standard deviation). The mean and 

standard deviation of ratetot were calculated separately for each model.  For the UAN and urea 

models, we also considered ratetot as a categorical variable describing discrete bins of N rate 

during the exploratory model-building process. For the AA model, we found a linear function of 

ratetot to be sufficient. This finding is consistent with the fact that any exponential function can 

be approximated by a line over a small range of values, and the range of values of ratetot for 

the AA model was much smaller (90-194 kg ha-1) than that of UAN (67-268 kg ha-1) and Urea 

(56-336 kg ha-1). 

We included the meteorological variables tempmax and tempmin, the maximum and minimum 

daily temperatures in the growing season, and totalwater (mm), the sum of precipitation 

(precip) and irrigation applied (irrigapp). For precip we used the cumulative growing season 

precipitation reported by the authors (preciprep) or, if none was reported, cumulative growing 
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 season precipitation estimated using Daymet (precipest). Maximum and minimum 

temperatures provide information about the effect of short-term extreme temperatures might 

have on yield, but do not give information about the distribution of temperature throughout 

the growing season or the cumulative growing degree days. Cumulative precipitation, while 

important, does not show the distribution of precipitation over the growing season.  To account 

for meteorological differences between sites, and between years at one site, that might affect 

yield but are not quantified by variables in our data, we include a random effect of year nested 

within county.  

We included the site- and/or plot-specific variables sand, the percent of the soil that is sand; 

clay, the percent of the soil that is clay; pH; and soil organic matter (SOM). We excluded other 

variables that described soil (soil series, soil class, soil order, and soil texture) due to the fact 

that their values often were confounded with values of county. Thus the county random effect 

accounts for between-site differences in yield due to soil variables not modeled explicitly and 

other site-specific variables, in addition to the meteorological differences. 

A2.4 Functional forms 

To determine the functional form (linear, quadratic, or exponential) through which each of the 

continuous variables (ratetot, tempmax, tempmin, totalwater, sand, clay, pH, and SOM) should 

enter the model, we examined scatterplots of yield vs. each variable, existing knowledge of the 

nature of the relationship between yield and these variables, and plots of residuals vs. each 

variable after fitting a model with a linear functional form for the variable.  

We considered interactions among the continuous variables. It might have been the case, for 

example, that the effect of tempmax was be different for a site/year with lower totalwater than 

for one with higher totalwater.  

Creating higher-order polynomial terms and interactions can result in a design matrix with 

multicollinearity, which can lead to inflated standard error estimates for regression parameters, 

inflated p-values, and erroneously declaring terms to be non-significant.  To minimize 

multicollinearity, we centered and scaled each continuous variable—by subtracting its mean 

and dividing by its standard deviation—prior to creating interaction terms, quadratic terms, or 

exponential terms. Centering minimizes the degree to which creation of interactions and higher 

order terms produces multicollinearity, while scaling mitigates other issues in the numerical 

algorithms that can occur when very large numbers occur in the same matrix as very small 

numbers. Because all models were run on centered-and-scaled variables, the regression 

parameter estimates must be interpreted with care, but interpreting regression parameter 

estimates is not the objective of this study. 
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 A2.5 Variable selection 

Variable-selection decisions occurred at many steps along the way. The first stage was in the 

compilation of the database. The second was in selecting that subset of each type of variable—

management practice, climate, meteorology, or soil—that best supported a regression model, 

as listed in Section A2.2. It is also necessary to eliminate from consideration some variables due 

to collinearity and estimability issues. 

A2.5.1 Collinearity 

At a given research site, continuous variables such as sand, clay, SOM, and sometimes pH are 

constant over all treatment combinations and years. The values of tempmax, tempmin, and 

totalwater vary year-to-year at a given site, but are the same for all treatment means at the 

same site in the same year. When continuous variables are measured at a small number of 

values, sometimes putting many of them together in a single model with interactions and 

higher order terms results in a great deal of multicollinearity, even after using prophylactic 

measures such as centering and scaling. 

To assess and eliminate remaining collinearity issues, we used an eigenvalue/eigenvector 

analysis of the design matrix for which the columns consist of all (centered-and-scaled) 

continuous variables and their pairwise interactions. Such an analysis captures overall 

collinearity among all columns in the design matrix, as opposed to comparing correlation 

coefficients of two variables at a time. This analysis gives the eigenvalues of X’X, where X is the 

design matrix, along with the condition index for each eigenvector. The largest condition index 

is called the condition number. Any condition index over 30 indicates the presence of a 

moderate collinearity. If it is over 100, it is a severe collinearity. The analysis also gives the 

percent of variability in each column explained by the eigenvector associated with each 

condition index. This allows identification of the columns involved in the collinearity. We 

identified interaction terms that contributed to collinearities and eliminated them until the 

condition number was around 30. We did not eliminate main effects in the collinearity analysis. 

Note that if an interaction term was eliminated based on collinearity, the variability in yield that 

might be attributable to that interaction will be accounted for by other variables that remain, 

by the definition of collinearity. Thus eliminating variables in this collinearity exercise does not 

prevent us from using variables other than fertilizer as controls. 

A2.5.2 Estimability 

Limitations in what variables can be considered also occur when not every combination of two 

categorical variables is represented in the data. Section A3 shows that the AA data support a 

full-factorial model since every combination of the categorical variables (apptime, till, and 

fertilizer) is represented in the data. For UAN and Urea, however, (Sections A4.1.4 and A4.5.4) 
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 the categorical variables must be considered as either main effects only or each 3- or 4-way 

interaction must be treated as the value of a new categorical variable we could call treatment. 

In other words, for UAN and urea, we could consider main effects of the categorical variables or 

interactions, but not both, in the same model because of lack of balance in the data. 

For the UAN and urea models, we also were unable to consider 2-way interactions between 

continuous and categorical variables due to not having enough different values of a continuous 

variable for each value of the categorical variables. A concrete example of this phenomenon is 

given in Section A4.2.3. 

A2.6 Residual analyses 

For each final model, we used Q-Q plots, histograms, and boxplots of residuals to assess the 

assumption of normality, scatterplots of residuals vs. predicted yield to assess heterogeneity 

and overall goodness-of-fit, and scatterplots of residuals vs. each continuous variable to assess 

functional form decisions and influence of individual observations on model fit. 

A3 Anhydrous ammonia (AA) 

A3.1 Selecting data 

A3.1.1 Original AA data 

Since there was only one enhanced efficiency fertilizer in the AA data (Table A 3.1), the variable 

fertilizer took only two values: AA+nitrapyrin and AA. The number of observations for each 

fertilizer and the overall number of observations was sufficient to support modeling over a 

variety of other conditions. If we had omitted observations for which SE was missing, more than 

two-thirds of the data would have been unusable. 

Table A 3.1 Source-inhibitor-fertilizer combinations in original AA data, number of observations, and number of observations 
with SE. 

Combination Source Inhibitor Fertilizer n n_with_se 

1 AA nitrapyrin AA+nitrapyrin 72 23 

2 AA none AA 92 30 

   Total 164 53 
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 A3.1.2 Edits 

The numbers of studies, author sets, states, counties, and years covered by the original AA 

data for all observations and for only observations including SE are shown in  

Table A 3.2.  To draw conclusions based on observations covering as wide a variety of 

conditions as possible, for the AA model we included all data, not omitting those observations 

lacking SE. 

Table A 3.2 Numbers of studies, author sets, states, counties, and years covered by the original AA data, for all observations and  
for observations that included SE. 

 Studies Author sets States Counties Years 

All observations 26 6 5 7 27 

Observations with SE 20 3 3 2 10 

To be included in the dataset for the model, values of explanatory variables such as rate, 

placement, application timing, tillage, and rotation needed to be adequately represented and 

distributed among observations for AA vs. AA+nitrapyrin. 

At planting/sidedress and pre-planting/sidedress applications are only found with AA, not with 

AA+nitrapyrin, in the original AA data (Table A 3.3). To avoid potential bias in conclusions about 

the effect of fertilizer vs the effect of apptime, we omitted these seven observations from the 

data. 

Table A 3.3 Apptime-fertilizer combinations in the original AA data, number of observations, and number of observations with 
SE. 

Combination apptime Fertilizer n n_with_se 

1 AtPl AA 15 6 

2 AtPl AA+nitrapyrin 11 4 

3 AtPl/SD AA 2 0 

4 PrePl AA 38 16 

5 PrePl AA+nitrapyrin 20 9 

6 PrePl/SD AA 5 0 

7 fall AA 32 8 

8 fall AA+nitrapyrin 41 10 

   164 53 

Only nine observations in the AA data were continuous corn, which was not enough to allow us 

to discern effects of rotation ( 
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 Table A 3.4). We omitted these observations from the data, which ensured that the cropping 

system is controlled in the data. 

Table A 3.4 Rotate-fertilizer combinations in the original AA data, number of observations, and number of observations with SE. 
Rotate = no represents continuous corn, and rotate = yes includes corn/soy, corn /double-crop soy, and corn/red clover. 

Combination rotate Fertilizer n n_with_se 

1 no AA 7 5 

2 no AA+nitrapyrin 2 0 

3 yes AA 85 25 

4 yes AA+nitrapyrin 70 23 

   164 53 

Strip-tilled plots were represented for AA but not for AA+nitrapyrin (Table A 3.5). To avoid 

confounding of the effect of fertilizer with the effect of till, we omitted those two observations. 

Table A 3.5 Till-fertilizer combinations in the original AA data, number of observations, and number of observations with SE. 

Combination till Fertilizer n n_with_se 

1 no-till AA 34 0 

2 no-till AA+nitrapyrin 20 0 

3 strip AA 2 2 

4 tilled AA 56 28 

5 tilled AA+nitrapyrin 52 23 

   164 53 

Final AA data 

Table A 3.6 shows the combinations of values of apptime (AtPl = at planting, PrePl = pre-plant, 

fall), till (no-till, tilled), and fertilizer (AA, AA+nitrapyrin) that remained after the above edits. 

The observations omitted in each step above were not mutually exclusive, thus a total of 16 

observations were omitted, resulting in a 148-observation dataset that allowed a complete 

factorial model to be fit. All combinations of each level of each factor were represented, with at 

least two observations for each combination. The dataset included only corn/soybean rotations 

and subsurface banded placements. 
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 Table A 3.6 Apptime-till-fertilizer combinations in the final AA data, number of observations, and number of observations with 
SE. 

Combination  apptime till Fertilizer n n_with_se 

1  AtPl no-till AA 4 0 

2  AtPl no-till AA+nitrapyrin 2 0 

3  AtPl tilled AA 11 6 

4  AtPl tilled AA+nitrapyrin 9 4 

5  PrePl no-till AA 9 0 

6  PrePl no-till AA+nitrapyrin 4 0 

7  PrePl tilled AA 23 11 

8  PrePl tilled AA+nitrapyrin 15 9 

9  fall no-till AA 12 0 

10  fall no-till AA+nitrapyrin 12 0 

11  fall tilled AA 19 8 

12  fall tilled AA+nitrapyrin 28 10 

    Total 148 48 

Fertilizer rate was balanced reasonably over the values of fertilizer (Figure A 3.1). The 

histograms below show that most values of ratetot (total N rate) for AA and AA+nitrapyrin were 

in the 114-150 kg ha-1 bins. AA had six, and AA+nitrapyrin five, observations in the 174 kg ha-1 

bin or higher. AA+nitrapyrin had four observations in the 90 kg ha-1 bin. If AA+nitrapyrin truly 

produced higher yield than AA, the small number of observations for AA with higher values of 

ratetot than those for AA+nitrapyrin was unlikely to skew results toward declaring AA to 

produce higher yield.  The same was true for the four observations for AA+nitrapyrin that fell in 

the 90 kg ha-1 bin, which was lower than that for any AA observation. After the final model was 

fit, we examined influence statistics to see if any observations exerted much more influence 

than others on conclusions about effects of different explanatory variables on yield. None of 

the highest and lowest values of ratetot had unusual influence on conclusions about the effect 

of ratetot on yield. 
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Figure A 3.1 Histograms of ratetot where fertilizer = AA and AA+N-Serve. 

We also examined balance of the other continuous variables between the two levels of 

fertilizer, and all of those variables had better balance than did ratetot. We further examined 

balance of all continuous variables over levels of apptime and till, and again saw good balance. 

A3.2 Model runs 

A3.2.1 Categorical variable model 

To see if the conclusions about the effect of fertilizer on yield were sensitive to the inclusion of 

the continuous variables, we began by fitting a categorical-variable-only AA model, with factors 

fertilizer, apptime, and till. The model included a random effect of year nested within county. 

Ratetot will be included as a continuous variable in model runs described below. 

Because all combinations of all levels of each of the three factors are represented, it was 

possible to examine main effects of each factor, along with two- and three-way interactions. 

Table A 3.7  gives the tests of significance for the full model. None of the terms containing 

fertilizer--the main effect or the two- or-three-way interaction terms— were statistically 

significant. 
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 Table A 3.7 Type III tests of fixed effects for the anhydrous ammonia categorical variable only model. The values of the 
variable fertilizer are AA and AA+nitrapyrin. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Fertilizer 1 103.3 2.34 0.1292 

apptime 2 105 9.09 0.0002 

till 1 33.92 5.15 0.0297 

apptime*Fertilizer 2 103.3 0.77 0.4655 

till*Fertilizer 1 103.3 0.38 0.5391 

apptime*till 2 105 1.31 0.2746 

apptime*till*Fertili 2 103.3 0.32 0.7251 

Terms were backward eliminated until all terms were significant at the alpha = 0.05 level, which 

resulted in a model that included only the main effects of apptime (p-value <0.0001) and till (p-

value 0.035). Further elimination to the alpha = 0.01 and 0.001 levels resulted in a model that 

included only the main effect of apptime.  Table A 3.8 and Table A 3.9 give the LSMeans for till  

and apptime in the alpha = 0.05 model. Mean yield for tilled plots, 11 Mg ha-1 is significantly 

higher than for no-till plots, 9.8 Mg ha-1. Mean yield for at planting applications was significantly 

higher than for pre-planting and fall applications, which were not significantly different from 

each other. 

Table A 3.8 Tukey-Kramer grouping for till least squares means (Alpha=0.05).  LSmeans with the same letter are not significantly 
different. 

till Estimated mean yield (Mg ha-1)  

tilled 11.5 A 

no-till 9.8 B 

Table A 3.9 Tukey-Kramer grouping for apptime least squares means (Alpha=0.05). LSmeans with the same letter are not 
significantly different. 

apptime Estimated mean yield (Mg ha-1)  

AtPl 11.3 A 

PrePl 10.3 B 

fall 10.3 B 
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 A3.2.2 Categorical and continuous variable models 

We next put the factors fertilizer, apptime, and till into a model along with all of the 

continuous variables, two-way interactions between each of the continuous variables and each 

of the three categorical factors, and those two-way interactions between pairs of continuous 

variables that remained after the collinearity analysis. For this model, fertilizer occurred as a 

main effect, in two-way interactions with each of apptime and till, in a three-way interaction 

with apptime and till, and in interactions with each of the continuous variables, ratetot, 

tempmax, tempmin, sand, clay, pH, SOM, and totalwater. None of the p-values for any of the 

terms containing fertilizer was lower than 0.26 (not statistically significant). 

A3.2.3 Final model 

We back-eliminated from this model all terms that were not significant at the alpha = 0.01 level. 

Main effects remained in the model if there was a significant interaction of that effect with 

another variable. The final remaining variables included apptime, ratetot, pH, and ratetot*pH. 

To this model we added fertilizer, and it had a non-significant p-value of 0.16 (Table A 3.10). 

Thus the effect of fertilizer on yield was not significant, and this conclusion was not sensitive to 

variable-selection decisions or sequence. 

Table A 3.10 Type III tests of fixed effects for the AA final model. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Fertilizer 1 107.6 2.00 0.1604 

apptime 2 109.6 17.18 <.0001 

ratetot 1 106.5 0.88 0.3496 

pH 1 140.1 0.21 0.6463 

ratetot_ph 1 113.4 8.65 0.0040 

 

Mean yield for at-planting applications was significantly higher than those for pre-planting and 

fall applications, which were not significantly different from each other (Table A 3.11). 

Table A 3.11 Tukey-Kramer grouping for apptime least squares means (alpha=0.05).  LSmeans with the same letter are not 
significantly different. 

apptime Estimated mean yield  (Mg ha-1)  

AtPl 11.7 A 

PrePl 10.7 B 

fall 10.6 B 
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 A4 Urea ammonium nitrate (UAN) 

A4.1 Selecting data 

A4.1.1 Original UAN data 

UAN had 6 enhanced efficiency fertilizers to examine. We omitted UAN + Nfusion from the 

analysis due to having too few observations. 

Table A 4.1 Source-inhibitor-fertilizer combinations in the original UAN data, number of observations, and number of 
observations with SE. 

Combination Source Inhibitor Fertilizer n n_with_se 

1 UAN NBPT UAN+Agrotain 56 56 

2 UAN NBPT+DCD UAN+AgrotainPlus 58 46 

3 UAN S.R UAN + Nfusion 2 2 

4 UAN S.R UAN+Nutrisphere 9 0 

5 UAN nitrapyrin UAN+Instinct 13 13 

6 UAN none UAN 117 105 

7 UAN thiosulfate UAN+cats 40 40 

   Total 295 262 

A4.1.2 Edited UAN data 

  

Table A 4.2 gives the remaining number of observations for each fertilizer. The factor fertilizer 

had 6 levels: UAN+Agrotain, UAN+AgrotainPlus, UAN+Nutrisphere, UAN+Instinct, UAN, and 

UAN+cats. If we included observations that are missing SE, we gained ten observations for 

UAN+AgrotainPlus, nine for UAN+Nutrisphere, and 12 for UAN.  

Table A 4.2 Values of the variable fertilizer in the edited UAN data, number of observations, and number of observations with 
SE. 

Fertilizer n n_with_se 

UAN+Agrotain 56 56 

UAN+AgrotainPlus 58 46 

UAN+Nutrisphere 9 0 

UAN+Instinct 13 13 
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Fertilizer n n_with_se 

UAN 117 105 

UAN+cats 40 40 

Total 293 260 

The factor apptime had 4 levels: at planting (AtPl), at planting/ sidedress (AtPl/SD), pre-planting 

(PrePl), and sidedress (SD) (Table A 4.3).  Including observations with missing SE added 21 and 

12 additional observations for at planting and sidedress, respectively.  

Table A 4.3 Values of the variable apptime in the edited UAN data, number of observations, and number of observations with 
SE. 

apptime n n_with_se 

AtPl 211 190 

AtPl/SD 16 16 

PrePl 27 27 

SD 39 27 

The factor place had 4 levels in the UAN data: broadcast, broadcast incorporated (bcast inc), 

subsurface banded (sub band), and surface banded (surf band) (Table A 4.4). Including 

observations with missing SE improved coverage of broadcast, subsurface banded, and of 

surface banded. 

Table A 4.4 Values of the variable place in the edited UAN data, number of observations, and number of observations with SE. 

place n n_with_se 

bcast inc 112 112 

broadcast 134 114 

sub band 23 21 

surf band 24 13 

The continuous variable ratetot ranged in value from 67 to 268 kg ha-1.  To allow a comparison 

of coverage similar to that for the other 4R factors, we created a categorical variable rate to 

divide ratetot into four evenly spaced bins from 67-117, 118-167, 168-217, and 218-268 kg ha-1 

( 

Table A 4.5). Including observations with missing SE was especially helpful for rates between 67 

and 117 kg ha-1, creating an increase from 65 to 92 observations. 
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Table A 4.5 Values of the variable rate in the edited UAN data, number of observations, and number of observations with SE. 

Rate n n_with_se 

Bin 1: 067-117 92 65 

Bin 2: 118-167 76 73 

Bin 3: 168-217 71 71 

Bin 4: 218-268 54 51 

A4.1.3 All combinations 

The total number of combinations of values of the four factors fertilizer, apptime, place, and 

rate was 6*4*4*4 = 384. Of these, the 70 listed in Table A 4.6 were represented in the data. Of 

the 70, we included the subset of 50 treatment combinations for which there were at least 3 

observations.  

Table A 4.6 Fertilizer-apptime-place-rate combinations in the edited UAN data, number of observations, and number of 
observations with SE. 

Combination Fertilizer apptime place rate n n_with_se 

1 UAN+Nutrisphere AtPl broadcast Bin 1: 067-117 3 0 

2 UAN+Nutrisphere AtPl broadcast Bin 2: 118-167 1 0 

3 UAN+Nutrisphere AtPl broadcast Bin 4: 218-268 1 0 

4 UAN+Nutrisphere AtPl surf band Bin 1: 067-117 2 0 

5 UAN+Nutrisphere SD broadcast Bin 1: 067-117 1 0 

6 UAN+Nutrisphere SD surf band Bin 1: 067-117 1 0 

7 UAN AtPl bcast inc Bin 1: 067-117 9 9 

8 UAN AtPl bcast inc Bin 2: 118-167 11 11 

9 UAN AtPl bcast inc Bin 3: 168-217 5 5 

10 UAN AtPl bcast inc Bin 4: 218-268 5 5 

11 UAN AtPl broadcast Bin 1: 067-117 14 11 

12 UAN AtPl broadcast Bin 2: 118-167 6 5 

13 UAN AtPl broadcast Bin 3: 168-217 5 5 

14 UAN AtPl broadcast Bin 4: 218-268 6 5 

15 UAN AtPl surf band Bin 1: 067-117 2 0 

16 UAN AtPl surf band Bin 3: 168-217 3 3 

17 UAN AtPl surf band Bin 4: 218-268 1 1 
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Combination Fertilizer apptime place rate n n_with_se 

18 UAN AtPl/SD broadcast Bin 3: 168-217 4 4 

19 UAN AtPl/SD broadcast Bin 4: 218-268 2 2 

20 UAN PrePl bcast inc Bin 1: 067-117 2 2 

21 UAN PrePl bcast inc Bin 2: 118-167 6 6 

22 UAN PrePl broadcast Bin 1: 067-117 3 3 

23 UAN PrePl broadcast Bin 3: 168-217 3 3 

24 UAN SD bcast inc Bin 3: 168-217 1 1 

25 UAN SD broadcast Bin 1: 067-117 2 0 

26 UAN SD sub band Bin 1: 067-117 7 6 

27 UAN SD sub band Bin 2: 118-167 5 5 

28 UAN SD sub band Bin 3: 168-217 5 5 

29 UAN SD sub band Bin 4: 218-268 5 5 

30 UAN SD surf band Bin 1: 067-117 2 0 

31 UAN SD surf band Bin 3: 168-217 3 3 

32 UAN+cats AtPl bcast inc Bin 1: 067-117 5 5 

33 UAN+cats AtPl bcast inc Bin 2: 118-167 5 5 

34 UAN+cats AtPl bcast inc Bin 3: 168-217 5 5 

35 UAN+cats AtPl bcast inc Bin 4: 218-268 5 5 

36 UAN+cats AtPl broadcast Bin 1: 067-117 5 5 

37 UAN+cats AtPl broadcast Bin 2: 118-167 5 5 

38 UAN+cats AtPl broadcast Bin 3: 168-217 5 5 

39 UAN+cats AtPl broadcast Bin 4: 218-268 5 5 

40 UAN+Agrotain AtPl bcast inc Bin 1: 067-117 5 5 

41 UAN+Agrotain AtPl bcast inc Bin 2: 118-167 5 5 

42 UAN+Agrotain AtPl bcast inc Bin 3: 168-217 5 5 

43 UAN+Agrotain AtPl bcast inc Bin 4: 218-268 5 5 

44 UAN+Agrotain AtPl broadcast Bin 1: 067-117 5 5 

45 UAN+Agrotain AtPl broadcast Bin 2: 118-167 5 5 

46 UAN+Agrotain AtPl broadcast Bin 3: 168-217 5 5 

47 UAN+Agrotain AtPl broadcast Bin 4: 218-268 5 5 

48 UAN+Agrotain AtPl/SD broadcast Bin 2: 118-167 4 4 

49 UAN+Agrotain AtPl/SD broadcast Bin 3: 168-217 4 4 
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Combination Fertilizer apptime place rate n n_with_se 

50 UAN+Agrotain AtPl/SD broadcast Bin 4: 218-268 2 2 

51 UAN+Agrotain PrePl broadcast Bin 1: 067-117 3 3 

52 UAN+Agrotain PrePl broadcast Bin 3: 168-217 3 3 

53 UAN+AgrotainPlus AtPl bcast inc Bin 1: 067-117 5 5 

54 UAN+AgrotainPlus AtPl bcast inc Bin 2: 118-167 5 5 

55 UAN+AgrotainPlus AtPl bcast inc Bin 3: 168-217 5 5 

56 UAN+AgrotainPlus AtPl bcast inc Bin 4: 218-268 5 5 

57 UAN+AgrotainPlus AtPl broadcast Bin 1: 067-117 8 5 

58 UAN+AgrotainPlus AtPl broadcast Bin 2: 118-167 6 5 

59 UAN+AgrotainPlus AtPl broadcast Bin 3: 168-217 5 5 

60 UAN+AgrotainPlus AtPl broadcast Bin 4: 218-268 6 5 

61 UAN+AgrotainPlus AtPl surf band Bin 1: 067-117 2 0 

62 UAN+AgrotainPlus AtPl surf band Bin 3: 168-217 3 3 

63 UAN+AgrotainPlus AtPl surf band Bin 4: 218-268 1 1 

64 UAN+AgrotainPlus SD broadcast Bin 1: 067-117 2 0 

65 UAN+AgrotainPlus SD sub band Bin 1: 067-117 1 0 

66 UAN+AgrotainPlus SD surf band Bin 1: 067-117 2 0 

67 UAN+AgrotainPlus SD surf band Bin 3: 168-217 2 2 

68 UAN+Instinct AtPl bcast inc Bin 2: 118-167 6 6 

69 UAN+Instinct PrePl bcast inc Bin 1: 067-117 1 1 

70 UAN+Instinct PrePl bcast inc Bin 2: 118-167 6 6 

A4.1.4 UAN FARP3 data 

 

Table A 4.7 lists the 50 treatment combinations in the 262-observation dataset we refer to as 

UAN FARP3 (fertilizer, apptime, rate, and place with at least 3 observations). Rather than 

further break down treatments according to rotation and tillage, we treated those variables as 

random effects, due to a lack of sufficient observations for every possible combination. The 

values of each of the variables in the UAN FARP 3 dataset were the same as the values in the 

edited UAN dataset. All of the levels listed in   

Table A 4.2, Table A 4.3, Table A 4.6, and  

Table A 4.5 for each factor were still represented in the data. 
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Table A 4.7 Fertilizer-apptime-place-rate combinations in the UAN FARP3 data, number of observations, and number of 
observations with SE. 

Combination Fertilizer apptime place rate n n_with_se 

1 UAN+Nutrisphere AtPl broadcast Bin 1: 067-117 3 0 

2 UAN AtPl bcast inc Bin 1: 067-117 9 9 

3 UAN AtPl bcast inc Bin 2: 118-167 11 11 

4 UAN AtPl bcast inc Bin 3: 168-217 5 5 

5 UAN AtPl bcast inc Bin 4: 218-268 5 5 

6 UAN AtPl broadcast Bin 1: 067-117 14 11 

7 UAN AtPl broadcast Bin 2: 118-167 6 5 

8 UAN AtPl broadcast Bin 3: 168-217 5 5 

9 UAN AtPl broadcast Bin 4: 218-268 6 5 

10 UAN AtPl surf band Bin 3: 168-217 3 3 

11 UAN AtPl/SD broadcast Bin 3: 168-217 4 4 

12 UAN PrePl bcast inc Bin 2: 118-167 6 6 

13 UAN PrePl broadcast Bin 1: 067-117 3 3 

14 UAN PrePl broadcast Bin 3: 168-217 3 3 

15 UAN SD sub band Bin 1: 067-117 7 6 

16 UAN SD sub band Bin 2: 118-167 5 5 

17 UAN SD sub band Bin 3: 168-217 5 5 

18 UAN SD sub band Bin 4: 218-268 5 5 

19 UAN SD surf band Bin 3: 168-217 3 3 

20 UAN+cats AtPl bcast inc Bin 1: 067-117 5 5 

21 UAN+cats AtPl bcast inc Bin 2: 118-167 5 5 

22 UAN+cats AtPl bcast inc Bin 3: 168-217 5 5 

23 UAN+cats AtPl bcast inc Bin 4: 218-268 5 5 

24 UAN+cats AtPl broadcast Bin 1: 067-117 5 5 

25 UAN+cats AtPl broadcast Bin 2: 118-167 5 5 

26 UAN+cats AtPl broadcast Bin 3: 168-217 5 5 

27 UAN+cats AtPl broadcast Bin 4: 218-268 5 5 

28 UAN+Agrotain AtPl bcast inc Bin 1: 067-117 5 5 

29 UAN+Agrotain AtPl bcast inc Bin 2: 118-167 5 5 
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Combination Fertilizer apptime place rate n n_with_se 

30 UAN+Agrotain AtPl bcast inc Bin 3: 168-217 5 5 

31 UAN+Agrotain AtPl bcast inc Bin 4: 218-268 5 5 

32 UAN+Agrotain AtPl broadcast Bin 1: 067-117 5 5 

33 UAN+Agrotain AtPl broadcast Bin 2: 118-167 5 5 

34 UAN+Agrotain AtPl broadcast Bin 3: 168-217 5 5 

35 UAN+Agrotain AtPl broadcast Bin 4: 218-268 5 5 

36 UAN+Agrotain AtPl/SD broadcast Bin 2: 118-167 4 4 

37 UAN+Agrotain AtPl/SD broadcast Bin 3: 168-217 4 4 

38 UAN+Agrotain PrePl broadcast Bin 1: 067-117 3 3 

39 UAN+Agrotain PrePl broadcast Bin 3: 168-217 3 3 

40 UAN+AgrotainPlus AtPl bcast inc Bin 1: 067-117 5 5 

41 UAN+AgrotainPlus AtPl bcast inc Bin 2: 118-167 5 5 

42 UAN+AgrotainPlus AtPl bcast inc Bin 3: 168-217 5 5 

43 UAN+AgrotainPlus AtPl bcast inc Bin 4: 218-268 5 5 

44 UAN+AgrotainPlus AtPl broadcast Bin 1: 067-117 8 5 

45 UAN+AgrotainPlus AtPl broadcast Bin 2: 118-167 6 5 

46 UAN+AgrotainPlus AtPl broadcast Bin 3: 168-217 5 5 

47 UAN+AgrotainPlus AtPl broadcast Bin 4: 218-268 6 5 

48 UAN+AgrotainPlus AtPl surf band Bin 3: 168-217 3 3 

49 UAN+Instinct AtPl bcast inc Bin 2: 118-167 6 6 

50 UAN+Instinct PrePl bcast inc Bin 2: 118-167 6 6 

    Total 262 248 

A4.2 Model runs 

Building a model designed to answer a question such as whether the effect of fertilizer on yield 

was statistically significant requires making decisions and judgement calls regarding what to put 

in the model and how to put it in. To examine the sensitivity of conclusions about the effect of 

fertilizer to these decisions, we ran several different models.   

A4.2.1 Estimability 

With an observational dataset that had categorical variables with many levels, estimability of 

treatment means must be considered. For example, for the 262-observation UAN dataset 

described above, there were 6 levels of the factor fertilizer, and 4 levels of the factor apptime, 
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 but only 12 of the 24 combinations of values of fertilizer and apptime were in the 

observational data. If all 24 combinations were available, it would be possible to consider in a 

model the main effects of fertilizer and apptime and the interaction effect fertilizer*apptime. 

When the factorial is not complete, however, it is possible to look at either the main effect of 

fertilizer and apptime or the interaction effect, but not both. A model that contains the 

interaction essentially treats each of the 12 combinations as a treatment.  

A4.2.2 Categorical variable only model 

To see if the conclusions about the effect of fertilizer on yield were sensitive to the inclusion of 

the continuous variables, we began by fitting a categorical-variable-only UAN model, with 

factors fertilizer, apptime, place, and rate—the categorical version of ratetot described above. 

The model included a random effect of year nested within county and random effects of each of 

rotate and till. Since the random effects of rotate and till were not significantly different from 

zero, we tried a random effect of the interaction rotate*till. It was not significant either, so it 

was eliminated from the model. The random effect of year within county was highly significant. 

The p-values for fertilizer, apptime, place, and rate were, respectively, 0.99, 0.21, 0.07, and 

<0.0001. Though at this point the effect of fertilizer was non-significant, we back-eliminated 

other insignificant terms one at a time to obtain a model with place and rate with p-values 0.02 

and <0.0001, respectively. Even though place was significant at the alpha = 0.05 level, the 

LSMeans for each level of place were not significantly different from one another based on a 

Tukey means comparison. There were significant differences in the LSMeans for some levels of 

rate (Table A 4.8). These results were consistent with the expectation that yield increases and 

then levels off as a function of N rate. 

Table A 4.8 Tukey-Kramer grouping for rate least squares means (alpha=0.05). LSmeans with the same letter are not 
significantly different. 

rate Estimated mean yield (Mg ha-1)  

Bin 4: 218-268 11.7 A 

Bin 3: 168-217 11.5 A 

Bin 2: 118-167 10.8 B 

Bin 1: 067-117 9.4 C 

A4.2.3 Categorical and continuous variable models 

We next put the factors fertilizer, apptime, and place into a model along with all of the 

continuous variables, but with no interactions. Now N rate was being quantified as the 

continuous variable erate. In this model, the p-values for fertilizer, apptime, place, and erate 

were 0.97, 0.005, 0.005, and <0.0001. The addition of main effects of the continuous variables 
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 did not change the conclusion about the effect of fertilizer. Since there are times when a 

variable has an effect on a response only by interacting with another variable, we added to the 

above model interactions between each of the continuous variables and fertilizer. None of the 

interaction terms had a p-value lower than 0.25. Including these interactions did not change the 

conclusion that the effect of fertilizer is not significant. 

We next fit a model with fertilizer, apptime, place, all of the continuous variables, and all 2-way 

interactions between pairs of continuous variables that remained after the collinearity analysis. 

The p-values for fertilizer, apptime, place, and erate in this model, which included both 

categorical and continuous variables were 0.97, 0.0004, 0.0010, and <0.0001, respectively. We 

did not include interactions between continuous and categorical variables—with the exception 

of the exercise described in the previous paragraph—because there were not enough values of 

each continuous variable within each level of each factor to allow reasonable estimation of 

individual slopes. Figure A 4.1 illustrates this point. For at-planting, there was a wide range of 

values of tempmax, but for AtPl/SD there were only two values of tempmax. To estimate the 

slope of a line, it is best to have quite a few more than two values of the independent variable 

represented to determine true underlying trends as opposed to over-fitting the data.  
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Figure A 4.1 Scatterplot of yield vs. tempmax, with different colors/symbols for each value of apptime, and a different 
regression line for each value of apptime: at planting (AtPl; dark blue circles), at planting/sidedress (AtPl/SD; cyan crosses), 
preplant (PrePl; yellow triangles), and sidedress (SD; pink squares). 

A4.2.4 Final model 

From the categorical and continuous model with interactions, we back-eliminated all terms that 

were not significant at the alpha = 0.01 level. We did not back-eliminate a main effect if there 

was a significant interaction between it and another variable (Table A 4.9).  
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 Table A 4.9 Type III tests of fixed effects for final UAN model. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Fertilizer 5 227.1 0.42 0.8376 

apptime 3 234.2 4.95 0.0024 

erate 1 236.6 134.84 <.0001 

tempmax 1 24.18 12.38 0.0017 

tempmin 1 35.22 6.73 0.0138 

pH 1 177.7 17.02 <.0001 

SOM 1 227.1 28.08 <.0001 

tempmax_erate 1 239.4 7.69 0.0060 

tempmin_erate 1 234.7 31.82 <.0001 

ph_erate 1 232.2 22.42 <.0001 

SOM_erate 1 236.2 10.04 0.0017 

The LSMeans yield estimates and comparisons for the values of apptime (Table A 4.10) showed 

that the mean yield for at-planting/sidedress was significantly higher than those for pre-

planting, at-planting, and sidedress, none of which were significantly different from the others. 

Table A 4.10 Tukey-Kramer grouping for apptime least squares means (alpha=0.05). LSmeans with the same letter are not 
significantly different. 

apptime Estimated mean yield (Mg ha-1)  

AtPl/SD 11.1 A 

PrePl 10.2 B 

AtPl 9.4 B 

SD 9.1 B 

A4.3 Sensitivity to using weights 

In meta-analyses in which the response variable is effect size (as opposed to treatment mean, 

which we use), authors use weights such as 1/V, where V is the variance of the effect size 

(Basche et al., 2014; Decock, 2014); r, the number of replicates supporting each treatment 

(Linquist et al., 2013);  1/nstudy , where nstudy is the number of observations from the same study; 

or some function of these (Decock, 2014; Pittelkow et al., 2015). How V is calculated depends 

on the choice of effect size, which depends on the nature of the data and the objectives of the 

researchers (Borenstein et al., 2009). Using 1/V gives more weight to effect sizes based on more 
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 precise treatment mean estimates. In our study, the response variable is not effect size, but 

the treatment means of yield, and the variance of the treatment means is the square of the 

standard error. Using 1/SE2 as a weighting factor is the analog to using 1/V. Using r as a 

weighting factor gives more credit to treatment means based on more replicates, but it does 

take into account relative precision for two different treatment means based on the same 

number of replicates. The rationale for using 1/nstudy is to prevent any single study from having 

an overwhelming influence on conclusions. That might be a good idea if every study covered a 

single site and a single year, but different studies had different numbers of treatments, but that 

is not the way studies are published. While one study might cover a single year at a single site 

with several treatments, a second study might have the same treatments for a single year at 

multiple sites, thus covering multiple sets of geographical, climatological, and soil conditions. A 

third study might have the same treatments for multiple years at one site, covering multiple 

sets of meteorological conditions, but with geographical, climatological, and soil conditions 

fixed, and a fourth study might have the same treatments at multiple sites for multiple years, 

covering multiple sets of geographical, climatological, meteorological, and soil conditions. Using 

1/nstudy would give far too much weight to the observations from the first of the four 

hypothetical studies, and far too little weight to the fourth. Of these choices of weights, using 

1/V for effect sizes or 1/SE2 for treatment means are the only ones with a basis in probability 

theory. 

We examined to what extent conclusions about the effect of fertilizer on yield were sensitive to 

the use of weights.  From the UAN FARP3 data, we created a new 248-observation dataset 

consisting of those treatment means for which SE was available ( 

Table A 4.7). We call this the UAN FARP3W data, where the W signifies that we are using this 

dataset for a weighting exercise. We considered the weights w1 as 1/SE2 and w2 as r (Table A 

4.11) because they have frequently been used in meta-analysis literature. We do not, however, 

advocate use of r as a weight, since its use has no basis in probability theory. Table A 4.11 

shows the quantiles for each weight in the UAN FARP3W data. The smallest value of 1/SE2 is 1, 

while the largest is 400. Since the “weights” are applied in the fitting algorithm after the 

squaring in least-squares occurs, and also after the squaring when maximum-likelihood or 

pseudo-likelihood methods are used, the actual weight applied to the observation is √𝑤1 =

1/𝑆𝐸. Thus, using 1/SE2 results in weighting at least one observation 20 times more than at 

least one other observation. The weight r does not produce vast differences in weights among 

the observations since most field studies have similar numbers of replicates. 
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 Table A 4.11 Distribution of values of weights 1/SE2 and r in the UAN FARP3W dataset. 

Variable Minimum 1st Pctl 10th Pctl Lower Quartile Median Upper Quartile 90th Pctl 99th Pctl Maximum 

1 𝑆𝐸2⁄  
𝑟 

1 
3 

1 
3 

2 
3 

3 
4 

5 
4 

12 
4 

23 
4 

83 
5 

400 
5 

Table A 4.12 gives the p-values of fertilizer for 5 different models. The first p-value is the same 

as the one given in Section A4.2.4 for the model fit to the 262-observation UAN FARP3 data 

with explanatory variables fertilizer, apptime, place, all of the continuous variables, all 2-way 

interactions between pairs of continuous variables that made the cut after the collinearity 

analysis, but no interactions between continuous and categorical variables. The reason for 

using these terms was to go back to the last step prior to eliminating terms based on p-values, 

because those p-values were calculated without weights. 

The second p-value is for a model with all the same explanatory variables, but fit to the 248-

observation UAN FARP3W data, again with no weights. Comparing these two p-values shows 

the difference in conclusions about the statistical significance of fertilizer that would result from 

dropping the 14 observations. It is not surprising that there is very little difference, given that 

the number of observations dropped is less than six percent of the total number of 

observations.  

The next two rows give the p-values resulting from fitting the same model using each of the 

two weights. Comparing the p-value for the model fit to the UAN FARP3W data with no 

weights, 0.9401, to that for the same data using w1, 0.9401, shows the difference in conclusions 

about the statistical significance of fertilizer that results from weighting the observations with 

w1. The statistical significance of fertilizer in the UAN model is not sensitive to the use of 

weights. 

Table A 4.12 P-values of fertilizer for UAN models that include the same explanatory variables, but different numbers of 
observations, or the same number of observations, but different weights. 

Dataset n Weight Fertilizer p-value 

UAN FARP3 262 none 0.9418 

UAN FARP3W 248 none 0.9468 

UAN FARP3W 248 w1 1/SE2 0.9401 

UAN FARP3W 248 w2 r 0.9603 
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 We were able to perform this sensitivity analysis for the UAN and urea models because the 

number of observations for which SE is available is close to the number when it is not ( 

Table A 4.7), and thus the coverage of treatment mean combinations is similar, and the 

continuous predictor variable coverage is similar. We did not do such an analysis for AA 

because the number of observations with SE is less than one third the total number of 

observations in the AA data ( 

Table A 3.6). Thus we would have to build a completely different model to do a weight-

sensitivity exercise because the coverage of explanatory variables by the reduced dataset 

would not support the model in Section A3.2.3. If we built an entirely new un-weighted model 

based on the reduced dataset, we might see a difference in the statistical significance of 

fertilizer due to eliminating 2/3 of the data. We could then apply weights and see if that 

significance changed. We did not think it advisable to draw conclusions based on 1/3 of the 

data when the weighting analysis suggested that it would not greatly change our conclusions. 

We assume that if the statistical significance of the effect of fertilizer is not sensitive to 

weighting for the UAN and urea models, it is unlikely that it would be for the AA model.  

A4.4 Urea 

A4.5 Selecting data 

The third model focuses on urea as the nitrogen fertilizer source and includes several enhanced 

efficiency fertilizers (Table A 4.13). Based on the availability of data, we classified Duration III, 

ESN, and generic polymer coated fertilizer (PCF), and called the group “PCU.” We omitted the 4 

observations where fertilizer = “urea/ESN,” since it was a mixture of ESN and urea, and there 

were not enough observations to treat it as a separate fertilizer treatment. We omitted the 

observation with fertilizer urea+nitrapyrin because the author did not specify which commercial 

formulation of nitrapyrin was used, and we lumped the observations for urea+Instinct and 

urea+N-Serve into one group which we called “urea+nitrapyrin.” 

A4.5.1 Original Urea data 

Table A 4.13 Source-inhibitor-fertilizer combinations in original Urea data, number of observations, and number of observations 
with SE. 

Combination Source Inhibitor Fertilizer n  n_with_se 

1 urea NBPT urea+Agrotain 51  40 

2 urea NBPT+DCD SuperU 78  74 
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Combination Source Inhibitor Fertilizer n  n_with_se 

3 urea PCF Duration III 2  2 

4 urea PCF ESN 160  118 

5 urea PCF PCU 8  8 

6 urea PCF urea/ESN 4  0 

7 urea S.R Nutrisphere 17  14 

8 urea nitrapyrin urea+Instinct 28  28 

9 urea nitrapyrin urea+N-Serve 4  0 

10 urea nitrapyrin urea+nitrapyrin 1  1 

11 urea none urea 205  165 

   Total 558  450 

A4.5.2 Edited Urea data 

Table A 4.14 gives the results after the above-mentioned edits. In this 553-observation dataset, 

the factor fertilizer had 6 levels, urea+Agrotain, SuperU, ESN, urea+Nutrisphere, 

urea+nitrapyrin, and urea. 

Table A 4.14 Values of the variable fertilizer in the edited Urea data, number of observations, and number of observations with 
SE. 

Fertilizer n n_with_se 

urea+Agrotain 51 40 

SuperU 78 74 

PCU 170 128 

urea+Nutrisphere 17 14 

urea+nitrapyrin 32 28 

urea 205 165 

Total 553  

The factor apptime had 6 levels, at planting (AtPl), at planting/side dress (AtPl/SD), pre-planting 

(PrePl), pre-planting/side dress (PrePl/SD), side dress (SD), and fall (Table A 4.15). 

Table A 4.15 Values of the variable apptime in the edited urea data, number of observations, and number of observations with 
SE. 

apptime n n_with_se 

AtPl 319 257 
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apptime n n_with_se 

AtPl/SD 8 4 

PrePl 103 81 

PrePl/SD 3 3 

SD 44 32 

fall 76 72 

The factor place had 4 levels: broadcast, broadcast incorporated (bcast inc), subsurface banded 

(sub band), and surface banded (surf band) (Table A 4.16). 

Table A 4.16 Values of the variable place in the edited urea data, number of observations, and number of observations with SE. 

place n n_with_se 

bcast inc 112 112 

broadcast 134 114 

sub band 23 21 

surf band 24 13 

The continuous variable ratetot had values from 56 to 276 kg ha-1. To allow a comparison of 

coverage similar to that for the other 4R factors, we created the categorical variable rate to 

divide ratetot into five evenly spaced bins from 56-96, 97-156, 157-216, 217-276, and 277-336 

kg ha-1(Table A 4.17).  

Table A 4.17 Values of the variable rate in the edited urea data, number of observations, and number of observations with SE. 

rate n n_with_se 

Bin 1:  56- 96 87 65 

Bin 2:  97-156 208 182 

Bin 3: 157-216 153 116 

Bin 4: 217-276 79 70 

Bin 5: 277-336 26 16 

Total 553  

A4.5.3 All combinations 

The total number of combinations of the six levels of fertilizer, six levels of apptime, four levels 

of place, and five levels of rate was 720. Of these combinations, the 127 that were represented 

are listed in Table A 4.18.  
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 Table A 4.18 Fertilizer-apptime-place-rate combinations in the edited Urea data, number of observations, and number of 
observations with SE. 

Combination Fertilizer apptime place rate n n_with_se 

1 PCU AtPl bcast inc Bin 1:  56- 96 8 8 

2 PCU AtPl bcast inc Bin 2:  97-156 15 11 

3 PCU AtPl bcast inc Bin 3: 157-216 11 7 

4 PCU AtPl bcast inc Bin 4: 217-276 5 5 

5 PCU AtPl bcast inc Bin 5: 277-336 4 0 

6 PCU AtPl broadcast Bin 1:  56- 96 11 8 

7 PCU AtPl broadcast Bin 2:  97-156 11 9 

8 PCU AtPl broadcast Bin 3: 157-216 10 8 

9 PCU AtPl broadcast Bin 4: 217-276 7 5 

10 PCU AtPl broadcast Bin 5: 277-336 1 0 

11 PCU AtPl sub band Bin 2:  97-156 1 0 

12 PCU AtPl sub band Bin 3: 157-216 1 1 

13 PCU AtPl surf band Bin 3: 157-216 5 5 

14 PCU AtPl surf band Bin 4: 217-276 6 6 

15 PCU AtPl/SD broadcast Bin 2:  97-156 1 0 

16 PCU AtPl/SD broadcast Bin 3: 157-216 1 0 

17 PCU AtPl/SD broadcast Bin 4: 217-276 1 0 

18 PCU AtPl/SD broadcast Bin 5: 277-336 1 0 

19 PCU PrePl bcast inc Bin 1:  56- 96 1 1 

20 PCU PrePl bcast inc Bin 2:  97-156 5 5 

21 PCU PrePl bcast inc Bin 3: 157-216 9 3 

22 PCU PrePl bcast inc Bin 4: 217-276 3 3 

23 PCU PrePl bcast inc Bin 5: 277-336 5 5 

24 PCU PrePl broadcast Bin 1:  56- 96 3 0 

25 PCU PrePl broadcast Bin 2:  97-156 4 3 

26 PCU PrePl broadcast Bin 3: 157-216 3 3 

27 PCU PrePl sub band Bin 2:  97-156 1 0 

28 PCU SD bcast inc Bin 3: 157-216 3 3 

29 PCU SD broadcast Bin 1:  56- 96 1 0 

30 PCU SD broadcast Bin 2:  97-156 3 2 
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Combination Fertilizer apptime place rate n n_with_se 

31 PCU SD sub band Bin 3: 157-216 1 1 

32 PCU SD surf band Bin 3: 157-216 6 6 

33 PCU fall bcast inc Bin 2:  97-156 4 4 

34 PCU fall broadcast Bin 2:  97-156 6 5 

35 PCU fall sub band Bin 1:  56- 96 2 2 

36 PCU fall sub band Bin 2:  97-156 7 6 

37 PCU fall surf band Bin 1:  56- 96 1 1 

38 PCU fall surf band Bin 2:  97-156 2 2 

39 SuperU AtPl bcast inc Bin 1:  56- 96 5 5 

40 SuperU AtPl bcast inc Bin 2:  97-156 5 5 

41 SuperU AtPl bcast inc Bin 3: 157-216 5 5 

42 SuperU AtPl bcast inc Bin 4: 217-276 5 5 

43 SuperU AtPl broadcast Bin 1:  56- 96 7 5 

44 SuperU AtPl broadcast Bin 2:  97-156 5 5 

45 SuperU AtPl broadcast Bin 3: 157-216 5 5 

46 SuperU AtPl broadcast Bin 4: 217-276 5 5 

47 SuperU AtPl surf band Bin 3: 157-216 3 3 

48 SuperU AtPl surf band Bin 4: 217-276 3 3 

49 SuperU AtPl/SD broadcast Bin 3: 157-216 1 1 

50 SuperU PrePl bcast inc Bin 1:  56- 96 1 1 

51 SuperU PrePl bcast inc Bin 2:  97-156 2 2 

52 SuperU PrePl bcast inc Bin 3: 157-216 2 2 

53 SuperU PrePl bcast inc Bin 4: 217-276 2 2 

54 SuperU PrePl bcast inc Bin 5: 277-336 3 3 

55 SuperU PrePl broadcast Bin 2:  97-156 2 2 

56 SuperU PrePl broadcast Bin 3: 157-216 2 2 

57 SuperU PrePl/SD broadcast Bin 2:  97-156 2 2 

58 SuperU PrePl/SD broadcast Bin 3: 157-216 1 1 

59 SuperU SD bcast inc Bin 3: 157-216 3 3 

60 SuperU SD broadcast Bin 1:  56- 96 1 0 

61 SuperU SD broadcast Bin 2:  97-156 3 2 

62 SuperU SD surf band Bin 3: 157-216 5 5 
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Combination Fertilizer apptime place rate n n_with_se 

63 urea AtPl bcast inc Bin 1:  56- 96 8 8 

64 urea AtPl bcast inc Bin 2:  97-156 25 21 

65 urea AtPl bcast inc Bin 3: 157-216 11 7 

66 urea AtPl bcast inc Bin 4: 217-276 4 4 

67 urea AtPl bcast inc Bin 5: 277-336 4 0 

68 urea AtPl broadcast Bin 1:  56- 96 9 6 

69 urea AtPl broadcast Bin 2:  97-156 9 8 

70 urea AtPl broadcast Bin 3: 157-216 10 8 

71 urea AtPl broadcast Bin 4: 217-276 9 7 

72 urea AtPl sub band Bin 2:  97-156 1 0 

73 urea AtPl sub band Bin 3: 157-216 1 1 

74 urea AtPl surf band Bin 3: 157-216 7 7 

75 urea AtPl surf band Bin 4: 217-276 7 7 

76 urea AtPl/SD broadcast Bin 3: 157-216 1 1 

77 urea AtPl/SD surf band Bin 3: 157-216 2 2 

78 urea PrePl bcast inc Bin 1:  56- 96 3 3 

79 urea PrePl bcast inc Bin 2:  97-156 15 15 

80 urea PrePl bcast inc Bin 3: 157-216 11 5 

81 urea PrePl bcast inc Bin 4: 217-276 5 5 

82 urea PrePl bcast inc Bin 5: 277-336 8 8 

83 urea PrePl broadcast Bin 1:  56- 96 3 0 

84 urea PrePl broadcast Bin 2:  97-156 1 0 

85 urea PrePl sub band Bin 2:  97-156 1 0 

86 urea SD bcast inc Bin 3: 157-216 3 3 

87 urea SD broadcast Bin 1:  56- 96 1 0 

88 urea SD broadcast Bin 2:  97-156 3 2 

89 urea SD sub band Bin 3: 157-216 2 0 

90 urea SD sub band Bin 4: 217-276 2 0 

91 urea SD surf band Bin 3: 157-216 5 5 

92 urea fall bcast inc Bin 2:  97-156 11 11 

93 urea fall broadcast Bin 1:  56- 96 1 1 

94 urea fall broadcast Bin 2:  97-156 8 7 
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Combination Fertilizer apptime place rate n n_with_se 

95 urea fall broadcast Bin 3: 157-216 1 1 

96 urea fall broadcast Bin 4: 217-276 1 1 

97 urea fall sub band Bin 1:  56- 96 2 2 

98 urea fall sub band Bin 2:  97-156 7 6 

99 urea fall surf band Bin 1:  56- 96 1 1 

100 urea fall surf band Bin 2:  97-156 2 2 

101 urea+Agrotain AtPl bcast inc Bin 1:  56- 96 5 5 

102 urea+Agrotain AtPl bcast inc Bin 2:  97-156 5 5 

103 urea+Agrotain AtPl bcast inc Bin 3: 157-216 9 5 

104 urea+Agrotain AtPl bcast inc Bin 4: 217-276 5 5 

105 urea+Agrotain AtPl broadcast Bin 1:  56- 96 8 5 

106 urea+Agrotain AtPl broadcast Bin 2:  97-156 5 5 

107 urea+Agrotain AtPl broadcast Bin 3: 157-216 6 5 

108 urea+Agrotain AtPl broadcast Bin 4: 217-276 6 5 

109 urea+Agrotain SD broadcast Bin 1:  56- 96 1 0 

110 urea+Agrotain SD broadcast Bin 2:  97-156 1 0 

111 urea+Nutrisphere AtPl bcast inc Bin 2:  97-156 2 2 

112 urea+Nutrisphere AtPl broadcast Bin 1:  56- 96 2 1 

113 urea+Nutrisphere AtPl broadcast Bin 2:  97-156 2 2 

114 urea+Nutrisphere AtPl broadcast Bin 3: 157-216 2 1 

115 urea+Nutrisphere AtPl broadcast Bin 4: 217-276 2 1 

116 urea+Nutrisphere fall bcast inc Bin 2:  97-156 2 2 

117 urea+Nutrisphere fall broadcast Bin 1:  56- 96 1 1 

118 urea+Nutrisphere fall broadcast Bin 2:  97-156 2 2 

119 urea+Nutrisphere fall broadcast Bin 3: 157-216 1 1 

120 urea+Nutrisphere fall broadcast Bin 4: 217-276 1 1 

121 urea+nitrapyrin AtPl bcast inc Bin 2:  97-156 5 5 

122 urea+nitrapyrin AtPl bcast inc Bin 3: 157-216 4 0 

123 urea+nitrapyrin AtPl broadcast Bin 2:  97-156 2 2 

124 urea+nitrapyrin PrePl bcast inc Bin 1:  56- 96 1 1 

125 urea+nitrapyrin PrePl bcast inc Bin 2:  97-156 7 7 
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Combination Fertilizer apptime place rate n n_with_se 

126 urea+nitrapyrin fall bcast inc Bin 2:  97-156 7 7 

127 urea+nitrapyrin fall broadcast Bin 2:  97-156 6 6 

A4.5.4 Urea FARP3 data 

Of those 127 combinations, we chose the 74 for which there were at least 3 observations. We 

call this the Urea FARP3 dataset. There are a total of 479 observations in these combinations 

(Table A 4.19).  

Table A 4.19 Fertilizer-apptime-place-rate combinations in the edited urea FARP3 data, number of observations, and number of 
observations with SE. 

Combination Fertilizer apptime place rate n n_with_se 

1 PCU AtPl bcast inc Bin 1:  56- 96 8 8 

2 PCU AtPl bcast inc Bin 2:  97-156 15 11 

3 PCU AtPl bcast inc Bin 3: 157-216 11 7 

4 PCU AtPl bcast inc Bin 4: 217-276 5 5 

5 PCU AtPl bcast inc Bin 5: 277-336 4 0 

6 PCU AtPl broadcast Bin 1:  56- 96 11 8 

7 PCU AtPl broadcast Bin 2:  97-156 11 9 

8 PCU AtPl broadcast Bin 3: 157-216 10 8 

9 PCU AtPl broadcast Bin 4: 217-276 7 5 

10 PCU AtPl surf band Bin 3: 157-216 5 5 

11 PCU AtPl surf band Bin 4: 217-276 6 6 

12 PCU PrePl bcast inc Bin 2:  97-156 5 5 

13 PCU PrePl bcast inc Bin 3: 157-216 9 3 

14 PCU PrePl bcast inc Bin 4: 217-276 3 3 

15 PCU PrePl bcast inc Bin 5: 277-336 5 5 

16 PCU PrePl broadcast Bin 1:  56- 96 3 0 

17 PCU PrePl broadcast Bin 2:  97-156 4 3 

18 PCU PrePl broadcast Bin 3: 157-216 3 3 

19 PCU SD bcast inc Bin 3: 157-216 3 3 

20 PCU SD broadcast Bin 2:  97-156 3 2 

21 PCU SD surf band Bin 3: 157-216 6 6 

22 PCU fall bcast inc Bin 2:  97-156 4 4 
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Combination Fertilizer apptime place rate n n_with_se 

23 PCU fall broadcast Bin 2:  97-156 6 5 

24 PCU fall sub band Bin 2:  97-156 7 6 

25 SuperU AtPl bcast inc Bin 1:  56- 96 5 5 

26 SuperU AtPl bcast inc Bin 2:  97-156 5 5 

27 SuperU AtPl bcast inc Bin 3: 157-216 5 5 

28 SuperU AtPl bcast inc Bin 4: 217-276 5 5 

29 SuperU AtPl broadcast Bin 1:  56- 96 7 5 

30 SuperU AtPl broadcast Bin 2:  97-156 5 5 

31 SuperU AtPl broadcast Bin 3: 157-216 5 5 

32 SuperU AtPl broadcast Bin 4: 217-276 5 5 

33 SuperU AtPl surf band Bin 3: 157-216 3 3 

34 SuperU AtPl surf band Bin 4: 217-276 3 3 

35 SuperU PrePl bcast inc Bin 5: 277-336 3 3 

36 SuperU SD bcast inc Bin 3: 157-216 3 3 

37 SuperU SD broadcast Bin 2:  97-156 3 2 

38 SuperU SD surf band Bin 3: 157-216 5 5 

39 urea AtPl bcast inc Bin 1:  56- 96 8 8 

40 urea AtPl bcast inc Bin 2:  97-156 25 21 

41 urea AtPl bcast inc Bin 3: 157-216 11 7 

42 urea AtPl bcast inc Bin 4: 217-276 4 4 

43 urea AtPl bcast inc Bin 5: 277-336 4 0 

44 urea AtPl broadcast Bin 1:  56- 96 9 6 

45 urea AtPl broadcast Bin 2:  97-156 9 8 

46 urea AtPl broadcast Bin 3: 157-216 10 8 

47 urea AtPl broadcast Bin 4: 217-276 9 7 

48 urea AtPl surf band Bin 3: 157-216 7 7 

49 urea AtPl surf band Bin 4: 217-276 7 7 

50 urea PrePl bcast inc Bin 1:  56- 96 3 3 

51 urea PrePl bcast inc Bin 2:  97-156 15 15 

52 urea PrePl bcast inc Bin 3: 157-216 11 5 

53 urea PrePl bcast inc Bin 4: 217-276 5 5 

54 urea PrePl bcast inc Bin 5: 277-336 8 8 
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Combination Fertilizer apptime place rate n n_with_se 

55 urea PrePl broadcast Bin 1:  56- 96 3 0 

56 urea SD bcast inc Bin 3: 157-216 3 3 

57 urea SD broadcast Bin 2:  97-156 3 2 

58 urea SD surf band Bin 3: 157-216 5 5 

59 urea fall bcast inc Bin 2:  97-156 11 11 

60 urea fall broadcast Bin 2:  97-156 8 7 

61 urea fall sub band Bin 2:  97-156 7 6 

62 urea+Agrotain AtPl bcast inc Bin 1:  56- 96 5 5 

63 urea+Agrotain AtPl bcast inc Bin 2:  97-156 5 5 

64 urea+Agrotain AtPl bcast inc Bin 3: 157-216 9 5 

65 urea+Agrotain AtPl bcast inc Bin 4: 217-276 5 5 

66 urea+Agrotain AtPl broadcast Bin 1:  56- 96 8 5 

67 urea+Agrotain AtPl broadcast Bin 2:  97-156 5 5 

68 urea+Agrotain AtPl broadcast Bin 3: 157-216 6 5 

69 urea+Agrotain AtPl broadcast Bin 4: 217-276 6 5 

70 urea+nitrapyrin AtPl bcast inc Bin 2:  97-156 5 5 

71 urea+nitrapyrin AtPl bcast inc Bin 3: 157-216 4 0 

72 urea+nitrapyrin PrePl bcast inc Bin 2:  97-156 7 7 

73 urea+nitrapyrin fall bcast inc Bin 2:  97-156 7 7 

74 urea+nitrapyrin fall broadcast Bin 2:  97-156 6 6 

    Total 479 397 

A4.6 Model runs 

A4.6.1 Categorical variable only model 

As with the UAN model, to see if the conclusions about the effect of fertilizer on yield were 

sensitive to the inclusion of the continuous variables, we began by fitting a categorical-variable-

only urea model, with factors fertilizer, apptime, place, and rate—the categorical version of 

ratetot described above. The model included a random effect of year nested within county and 

random effects of each of rotate and till. Since the random effects of rotate and till were not 

significantly different from zero, we tried a random effect of the interaction rotate*till. It was 

not significant and eliminated from the model. The random effect of year within county was 

highly significant. The p-values for fertilizer, apptime, place, and rate are shown in Table A 4.20. 
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 Table A 4.20 Type III tests of fixed effects for categorical variable only urea model. 

Effect Num DF Den DF F Value Pr > F 

Fertilizer 4 424.3 1.59 0.1747 

apptime 3 447.5 4.09 0.0069 

place 3 445.7 2.17 0.0908 

rate 4 438.1 28.61 <.0001 

 The LSMeans tables for apptime and rate from this model show that mean yield for sidedress 

application was significantly higher than that for pre-plant and fall applications, but was not 

significantly different from at planting applications (Table A 4.21). There were no significant 

differences in mean yield among at planting, pre-planting, or fall applications. 

Table A 4.21 Tukey-Kramer grouping for apptime least squares means (Alpha=0.05). LS-means with the same letter are not 
significantly different. 

apptime Estimated mean yield (Mg ha-1)  

SD 12.8  A 

AtPl 11.0 B A 

PrePl 10.6 B  

fall 10.5 B  

Mean yield for Bin 5, representing the highest N rates, was significantly higher than those for 

Bins 1-4. Mean yield for Bin 4 was significantly higher than for Bins 2 and 1, but was not 

significantly different from Bin 3. Mean yields for Bins 2 and 3 were significantly higher than for 

Bin 1, but were not significantly different from one another. 

Table A 4.22 Tukey-Kramer grouping for rate least squares means (Alpha=0.05). LS-means with the same letter are not 
significantly different. 

rate Estimated mean yield (Mg ha-1)  

Bin 5: 277-336 13.1  A 

Bin 4: 217-276 11.6  B 

Bin 3: 157-216 11.3 C B 

Bin 2:  97-156 10.7 C  

Bin 1:  56- 96 9.4  D 
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 A4.6.2 Categorical and continuous 

We next put the factors fertilizer, apptime, and place into a model along with all of the 

continuous variables, but with no interactions. In this model, we used N rate as the continuous 

variable erate (where rate was modified to an exponential functional form). In this model, the 

p-values for fertilizer, apptime, place, and erate were 0.058, <0.0001, 0.042, and <0.0001.  

At this stage for UAN, we considered a model with fertilizer, apptime, place, erate, all other 

continuous variables, and interactions of fertilizer with all of the continuous variables. This was 

not possible for urea, however, because the only way to include interactions between fertilizer 

and the continuous variables would have been to omit the main effects of the continuous 

variables from the model. There were not enough unique values of each continuous variable for 

each level of the variable fertilizer, which, as was the case for UAN, was also the reason 

interactions between the other categorical variables and the continuous variables were not 

included.  

We next fit a model with fertilizer, apptime, place, all of the continuous variables, and all 2-way 

interactions between pairs of continuous variables that remained after the collinearity analysis. 

As noted above, this model did not include interactions between categorical and continuous 

variables. The p-values for fertilizer, apptime, place, and erate in the model were 0.029, 

<0.0001, 0.0093, and <0.0001, respectively. 

A4.6.3 Final model 

Finally, we back-eliminated from this model all terms that were not significant at the alpha = 

0.01 level. We performed this elimination in blocks, eliminating a few variables at a time. A 

main effect would not be eliminated, however, if an interaction of that effect with another 

variable remained in the model. After performing the back-eliminations, we examined residual 

plots to assess model fit and to determine whether any observations exerted undue influence 

on results. We found a distinct downward-trend-pattern in the plot of residuals vs. predicted 

values that indicated a problem with the fit. Our investigation showed that outlying values of 

sand and clay caused variables formed as interactions between sand and clay and other 

continuous variables to appear to have statistical significance, but inclusion of these terms in 

the model created the pattern mentioned. We added and subtracted terms from the model and 

examined residual plots and statistical significance of the remaining terms. We also 

reconsidered the random effect rotate*till, which is significant based on the 95% confidence 

bounds. We arrived at a final model that included main effects of all of the continuous 

variables, all of which were significant at the alpha = 0.01 level, except for tempmax, which was 

very close to being significant at this level (Table A 4.23). The final model includes no 

interactions, but does include apptime, which was highly significant, the random effect of year 

nested within county, and the random effect rotate*till. As with the other sources, we left 
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 fertilizer in the final model.  Fertilizer was not significant at the alpha = 0.05 level, and, as the 

fertilizer LSMeans table demonstrates (Table A 4.24), there were no significant differences in 

the mean yield for the different urea-based fertilizers. 

Table A 4.23 Type III tests of fixed effects for final urea model. 

Effect Num DF Den DF F Value Pr > F 

Fertilizer 4 385.8 2.36 0.0525 

apptime 3 430.8 6.15 0.0004 

tempmax 1 34.38 7.39 0.0102 

tempmin 1 43 7.69 0.0082 

pH 1 291.6 7.84 0.0055 

SOM 1 425.6 16.46 <.0001 

totalwater 1 167.8 47.60 <.0001 

erate 1 388.2 148.04 <.0001 

 

Table A 4.24 Tukey-Kramer grouping for Fertilizer least squares means (alpha=0.05). LSmeans with the same letter are not 
significantly different. 

Fertilizer Estimated mean yield (Mg ha-1)   

SuperU 10.3 A 

PCU 10.2 A 

urea+Agrotain 10.2 A 

urea+nitrapyrin 9.8 A 

urea 9.8 A 

In the urea model, mean yield for sidedress applications was significantly higher than for pre-

plant and fall applications, but was not significantly different from that for at planting 

applications (Table A 4.25). Mean yield for at planting applications was significantly higher than 

that for pre planting applications, but was not significantly different from fall applications. 

Mean yield for fall and pre planting applications were not significantly different. Interpretation 

of these results should be with care as the dataset was developed to model enhanced efficiency 

fertilizers, not to quantify effects of application timing on yield. 
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 Table A 4.25 Tukey-Kramer grouping for apptime least squares means (alpha=0.05). LSmeans with the same letter are not 
significantly different. 

apptime Estimated mean yield (Mg ha-1)  

SD 11.9  A 

AtPl 10.0 B A 

fall 9.4 B C 

PrePl 9.0  C 

A4.7 Sensitivity to weights 

Just as we did for the UAN model, we performed an analysis to test the sensitivity of the effect 

of fertilizer on yield based to the use of weights. From the 479-observation Urea FARP3 data 

set, we created a new 397-observation dataset consisting of those treatment means for which 

SE was available. We call this the urea FARP3W data, where the W signifies that we are using 

this dataset for a weighting exercise.  

We again considered the weights: 1/SE2 and r. Quantiles for each weight in the Urea FARP3W 

data show that the distribution of values of w1 are more disparate for the urea data than for 

the UAN data (Table A 4.26). The maximum value is still 400, but the minimum value is 0.2, so 

that the observation given weight 400 will be given √2000 ≈ 45 times the weight of the 

observation given weight 0.2. The reason that r, the number of replicates, takes a maximum 

value of 12 is that there are some treatment means that were reported by the authors as 

averages over years. Thus those means are based on the sum of the replicates over those years. 

Table A 4.26 Distribution of values of weights 1/SE2 and r in the urea FARP3W dataset. 

Variable Minimum 

1st 

Pctl 

10th 

Pctl 

Lower 

Quartile Median 

Upper 

Quartile 

90th 

Pctl 

99th 

Pctl Maximum 

1/SE2 

r 
0.2 

3.0 

0.3 

3.0 

1.5 

3.0 

2.8 

4.0 

5.2 

4.0 

12.8 

4.0 

27.7 

4.0 

277.8 

12.0 

400.0 

12.0 

The p-values of fertilizer for five different models are shown in Table A 4.27. The first p-value, 

0.0572 is for a model including fertilizer, apptime, place, and main effects of all continuous 

variables. It differs from the urea final model only in that we added place back to this model, 

since place had been eliminated based on non-weighted p-values. The second p-value, 0.0738, 

is for a model with all the same explanatory variables, but fit to the 397-observation urea 

FARP3W data, again with no weights. Comparing the first two p-values shows the difference in 
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 conclusions that would result from dropping the 82 observations: the effect of fertilizer was 

not significant at the alpha=0.05 level before or after removing the observations.  

The next two rows give the p-values resulting from fitting the same model using the two 

weights. We can see that for a model fit to the urea FARP3W data, going from using no weight 

to using 1/SE2 changed the p-value from 0.0738 to 0.0465. The latter p-value would indicate 

statistical significance at the alpha = 0.05 level. Fertilizer would probably be eliminated if we 

took this model and back-eliminated until all terms were significant at the alpha = 0.01 level, as 

we did with the urea final model. The reason we used the alpha = 0.01 level was that we are 

performing many tests in all of these models for the sensitivity analyses and backward 

elimination steps –  far more hypothesis tests than one would perform when analyzing the 

results of a designed experiment. Reducing the statistical significance level reduces the number 

of tests that would be incorrect. Using the alpha = 0.01 level, the significance of fertilizer was 

not sensitive to the use of weights. 

Table A 4.27 P-values of fertilizer for UAN models that include the same explanatory variables, but different numbers of 
observations, or the same number of observations, but different weights. 

Dataset Weight Fertilizer p-value 

UREA FARP3 none 0.0572 

UREA FARP3W none 0.0738 

UREA FARP3W 1/SE2 0.0465 

UREA FARP3W r 0.0841 

 


