Nitrogen Losses: A Meta-analysis of 4R Nutrient Management in U.S. Corn-Based Systems

USA-4RM-10 Alison Eagle, Lydia Olander, Emily Snow Bernhardt, James Heffernan Duke University

2015 Interpretive Summary

The specific aim of this meta-analysis project was to determine the impact of 4R N management techniques on nitrous oxide (N_2O) and nitrate (NO_3) losses relative to corn yield. The team collected and synthesized field research data published prior to July 2014 that measured N losses as affected by 4R fertilizer N management (right rate, source, timing, and placement) in North American corn-based cropping systems.

We identified 4,400 research papers that mention fertilizer, N, or nutrient management in agriculture, or fertilizer-associated N_2O or NO_3 losses. After a review of titles and abstracts, the majority of studies were discarded because they were not about crop land, corn, or N losses, were outside North America, or addressed N losses and transport after the field. This triage found 237 studies suitable for further review; only 27 and 22 studies contained N₂O and NO₃ loss data and also reported corn yield. An additional nine N2O and five NO3 studies reported losses but not yield. The final database included 404 observations of N₂O emissions and 396 observations of NO3 leaching losses. Data limitations made it difficult to identify possible tradeoffs between N₂O and NO₃ losses. Only one study reported losses of both N₂O and NO₃. Across all studies, the geographies for the N₂O and NO₃ data rarely overlap, and management practices for both types of field studies were diverse. For example, 60% of NO₃ observations and only 1.6% of the N₂O data were reportedly from tile-drained fields. Thirty-eight percent (38%) of the N₂O observations, and only 8% of the NO₃ observations, were from no-till systems. Fertilizer N rate response curves showed crop yield increasing as a function of N rate to a maximum point; N_2O emissions respond in an exponential fashion; and NO_3 losses tend to be linear in relation to fertilizer application rate. Statistical models found that adding nitrification inhibitors with the N fertilizer significantly reduced yield-scaled N₂O emissions. Delaying fertilizer N application until the crop was growing (sidedress) had a similar effect of reducing N₂O emissions. Nitrate leaching losses were lower in soils with more organic matter and in drier climates, but lack of data and high variability made it difficult to see any impact of fertilizer management.

To better determine management effects on losses, more data with broader regional coverage are

needed. In the meantime, process-based models calibrated to all available data may be the most reliable way to predict loss responses and to investigate relationships between losses of N_2O and NO_3 .